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Abstract— Indoor localization and position tracking are
essential to support applications and services for ambient-assisted
living. While the problem of indoor localization is still open and
already quite complex per se, in large public places, additional
issues of cost, accuracy, and scalability arise. In this paper, the
position estimation and tracking technique developed within the
project devices for assisted living (DALi) is described, analyzed
through simulations, and finally validated by means of a variety
of experiments on the field. The goal of the DALi project is to
design a robotic wheeled walker guiding people with psychomotor
problems. Indeed, people with motor or cognitive impairments
are often afraid of moving in large and crowded environments
(e.g., because they could lose the sense of direction). In order to
mitigate this problem, the position tracking approach described
in this paper is based on multisensor data fusion and it is
conceived to assure a good tradeoff between target accuracy,
level of confidence, and deployment costs. Quite interestingly,
the same approach could be used for indoor automated guided
vehicles and robotics.

Index Terms— Assistive devices, Kalman filtering, navigation,
performance evaluation, position measurement, sensor fusion.

I. INTRODUCTION

ACCORDING to recent market forecasts and analyses,
the worldwide turnover related to indoor navigation

is expected to reach U.S. $2.6 billion in 2018 at a
compounded annual growth rate of about 42% [1]. The range
of potential applications of indoor localization is very large.
One of the most interesting is the so-called ambient-assisted
living (AAL), i.e., the application of information and commu-
nication technologies to the assistance of older adults or of
people with impairments. In this field, most of the challenges
come from the fragility of users and from their specific state
of mind. In order to be applicable to AAL, a localization
technology has to be robust, reliable, and, most importantly,
acceptable to the user [2].
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The project devices for assisted living (DALi) is an
EU research initiative with the goal of developing a wheeled
robotic assistant (called c-Walker) able to offer a concrete
support to older adults in their navigation within complex
indoor environments, such as shopping malls, railway stations,
or airports. The c-Walker helps the user decide a route in the
environment (e.g., to visit a sequence of desired locations),
monitors the surroundings to detect possible anomalies or
hazards, adapts the path to the changing conditions of the
environment, and guides the user along the path using electro-
mechanical brakes or haptic interfaces. Such tasks rely on
accurate real-time position estimation, which is the specific
topic of this paper.

Although the c-Walker is the outcome of a particular
research project, the position tracking approach is applicable to
a much larger class of service robots offering close assistance
to their users. The main features of the proposed approach can
be summarized as follows:

1) The wanted accuracy and the related level of confidence
have to be good enough to enable fine-grained correc-
tions and maneuver in confined spaces.

2) The cost of the device and the impact of the instrumen-
tation in the environment should be reasonable both for
common users and for the managers of the public space.

3) The form factor of the walker has to be acceptable in
terms of size, weight, and invasiveness.

4) The proposed approach has to be scalable enough to
allow the operation of several walkers at the same time.

All these requirements cannot be met using just a single local-
ization technique. For instance, the positioning uncertainty
of solutions based on radio signal strength intensity (RSSI)
measurements and fingerprinting can be so large as a few
meters, which is inadequate for the intended purpose [3]–[5].

Techniques based on round-trip time or time-of-arrival
measurements of ultrawideband [6], [7], chirp spread
spectrum [8]–[10], or ultrasonic signals [11], [12], even if
accurate in line-of-sight (LOS) conditions, could be severely
affected by fixed or moving obstacles, which are quite
common in large public (and potentially crowded) environ-
ments. Moreover, the use of constantly active wireless links
between the moving target and multiple fixed anchor nodes
is hardly scalable and poses interference problems when
multiple objects have to be tracked at the same time. Also,
the measurement data collected by different nodes should be
properly synchronized through an ad-hoc protocol, which may
pose reliability and bandwidth issues [10], [13].
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TABLE I

MAIN FEATURES OF VARIOUS POSITION TRACKING TECHNIQUES THAT INSPIRED THE APPROACH PROPOSED IN THIS PAPER

The use of wearable inertial measurement units (IMUs)
installed either on shoes or on portable items for
pedestrians [14]–[16], is possible in principle, but its efficacy
for people with deambulation problems is questionable.

Finally, the position tracking techniques based exclusively
on vision systems, even if precise, generally require powerful
and expensive computational platforms [17], [18]. Moreover,
the use of cameras is influenced by light conditions and may
pose range, privacy, and scalability issues.

In order to tackle the manifold issues listed above, many
researchers nowadays think that the best approaches for high
performance and scalable indoor positioning should rely on
multisensor data fusion [19], [20]. This is also the approach
described in this paper. When a walking assistant, like the
DALi’s c-Walker, is used, odometry and gyroscopes data
can be combined with sporadic external measurement results
providing information on absolute position and direction of
motion [21].

In the rest of this paper, first, in Section II, some
related works are presented to emphasize the similarities and
differences between the proposed technique and other solu-
tions found in the literature. In Section III, the localization
problem is formulated and the underlying system and measure-
ment models are described. Such models partially derive from
the results of preliminary studies reported in [22] and [23], but
they have been improved in order to estimate and compensate
the effect of possible left-/right-side mechanical asymmetries
of the device. Section IV focused on the description of the
chosen estimator. Section V reports some simulation results
based on the data collected from real sensors. The purpose

of the simulations is to analyze the behavior of the position
tracking technique in different conditions to achieve a
suboptimal tradeoff between performances and deployment
costs. Such results are partially different from those reported
in [21], because they are based on a better characterization of
the sensors actually used in the development of the c-Walker.
Section VI deals with a short description of the c-Walker
prototype and includes the results of a variety of on-the-field
experiments. Finally, Section VII concludes this paper.

II. RELATED WORK

The results of the experimental activities reported in [31]
confirmed that the accuracy of high-performance wireless
ranging techniques is quite limited in non-LOS conditions.
Thereby, a number of alternative approaches (in part borrowed
from robotics) have been considered to fulfill the multifaceted
requirements described in Section I. A list of the main research
works that inspired the proposed approach, along with a
short description of their advantages and disadvantages, is
summarized in Table I.

First of all, since we deal with the localization of a wheeled
device, a powerful resource for positioning is offered by
odometry. However, as customary of dead reckoning tech-
niques, odometry-based localization suffers from unbounded
uncertainty growth and lack of initial observability. While
position and orientation errors generally increase with a rate
depending on both odometer resolution and accuracy, the
estimation results can be considerably improved by fusing
gyroscope and encoder data on the basis of their respec-
tive uncertainties in different conditions of motion [24].
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Unfortunately, also in this case, there are no guarantees to
keep the overall position uncertainty bounded. Moreover, the
initial state of the system is still unobservable. To tackle
these problems, an additional absolute localization technique
is certainly needed. Given that no external wireless ranging
solutions based on RSSI or ToF measurements proved to be
accurate enough [31], the absolute position values can be
obtained from a set of passive Radio Frequency Identification
(RFID) tags. In fact, they are inexpensive, can be stuck on
the floor at known locations, and, even if they have a quite
limited range (in the order of a few tens of centimeters or
less), they can be easily detected, regardless of the number of
people and obstacles in the environment. Four good solutions
of this kind are described in [25]–[28]. In [25], a fine-grained
grid of passive RFID tags is used for robot navigation and
trajectory reconstruction. No other sensors are employed.
In [26], a similar approach is adopted, but an additional vision
system is used to recognize the color patches placed on the
top of different robots. In [27], a similar grid of RFID tags
is used along with a set of ultrasonic sensors installed on
the front side of a robot for position refinement through data
fusion. A common characteristic of the solutions mentioned
above is high accuracy, which, however, is paid in terms of
RFID grid granularity. In fact, in all cases, the grids of tags
are very dense (with distances between about 0.3 and 0.5 m),
which is costly and impractical in very large environments.
Moreover, the fixed external cameras in [26] pose privacy and
scalability issues, while the on-board ultrasonic sensors (which
refine position in the presence of fixed obstacles) could lead
to unpredictable results in densely populated environments.
In [28], the problem of RFID density is partially addressed
by a special triangular multiloop-bridge reader antenna that
generates voltage signals across a bridge circuit. Since such
signals are a function of tag location, by combining them with
both the information from a database and the data measured
by the encoders of a wheeled device (e.g., a wheelchair),
the position and the orientation of the device can be
estimated with high accuracy and with a smaller number of
RFID tags.

In this paper, our goal is not to maximize accuracy, but
rather to assure a good compromise between accuracy, level
of confidence, costs, and deployment complexity. A similar
idea is also described in [29] that, to the best of our knowl-
edge, is the solution that looks most similar to the technique
presented in this paper. In [29], a smart walker instrumented
with encoders, a compass, and an RFID reader corrects the
odometry-based position by reading mats of RFID tags placed
in strategic points of corridors (i.e., where people are supposed
to come across with a high probability). However, the solution
suffers from some drawbacks. First of all, the use of mats is not
suitable for wide rooms where the user can potentially move
in any direction. Second, the adopted sensor fusion algorithm
is unclear. Apparently, the sensor measurement uncertainties
are not used to support the estimation model, as instead it is
done in this paper. Third, the problem of attitude estimation is
addressed with a compass that, in our experience, can lead
to very poor results in some indoor environments. In this
respect, it is worth emphasizing that the long-term position

uncertainty is crucially affected not only by the accuracy of the
absolute localization system, but also by possible attitude or
orientation errors. Even assuming that the coordinates of the
moving target are perfectly adjusted when an RFID tag is
detected, the position error may grow quickly if the estimated
orientation is very different from the real one. This problem
is not so visible when the RFID grid is dense, but it becomes
significant when RFID grid granularity is coarse. In such cases,
an additional sensing system able to measure the orientation
of the walker in a global reference frame is needed, as it
is confirmed by the analysis reported in [22]. This result is
also consistent with the solution described in [30], where, in
order to estimate the orientation of a mobile device over a
carpet of RFID tags, four RFID readers are used to detect at
least two tags at a time. Unfortunately, in our case, adding
too many readers would make the walker bulky, fragile, and
uncomfortable for the user. In addition, the distance between
pairs of adjacent tags should be small enough to enable the
detection of two tags at a time, thus making, again, the
grid quite dense. Since compasses and magnetometers proved
to be quite unreliable indoors, we decided to measure the
walker’s orientation by means of a low-cost front camera
already available on the device for collision avoidance and
trajectory planning. In particular, the camera is supposed to
detect suitable markers (e.g., arrow-shaped adhesive stickers)
deployed in the environment. Even if such markers could be
aesthetically unpleasant in some contexts, the use of a standard
and properly chosen type of markers makes the performance
of the localization system more robust to changeable environ-
mental conditions. Moreover, in spite of the typical problems
that may arise when a vision system is employed in potentially
crowded environments (e.g., due to obstacles), we think that
cameras can still be very effective for the intended purpose,
provided that the following conditions hold

1) The visual markers pointing toward a known direction
are easy and unambiguous to detect.

2) The camera duty cycle is kept as low as possible
(e.g., it is activated every few seconds).

3) The image processing algorithm is simple, robust, and
computationally light.

III. PROBLEM FORMULATION

A qualitative overview of the framework underlying
the proposed position estimation technique is shown
in Fig. 1(a) and (b). In principle, the motion of a wheeled
walker in a reference frame 〈W 〉 = Xw × Yw × Zw can be
described by the following basic kinematic system:

ṡ =
⎡
⎣

ẋ
ẏ
θ̇

⎤
⎦ =

⎡
⎣

v cos θ − Lω sin θ
v sin θ + Lω cos θ

ω

⎤
⎦ (1)

o = s (2)

where s = [x, y, θ ]T is the vector of the state variables,
v is the forward velocity of the walker along the direction of
motion, ω is its angular velocity, L is a constant representing
the minimum distance between the midpoints of the rear
and front wheels, respectively, and o is the output vector of
the system. Note that (x, y) in Fig. 1(a) are the Cartesian
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Fig. 1. Qualitative overview of the walker’s position estimation problem,
with a special emphasis on (a) RFID tag detection and (b) visual marker
recognition.

coordinates of the midpoint of the front wheel axle on
plane Xw × Yw , while θ is the walker’s orientation angle.
This angle is defined by the longitudinal axis of symmetry of
the walker with respect to axis Xw , as shown in Fig. 1(b).
Since the walker acts as a unicycle-like vehicle, the forward
and angular velocities, v and ω, can be regarded as functions
of the rear wheel velocities, i.e., v = r/2(ωr + ωl) and
ω = r/d(ωr −ωl ), where ωr and ωl are the angular velocities
of the right and left wheels, respectively, r is the wheel
radius, and d is the rear axle length. Ideally, once the initial
position and orientation of the walker are known, measuring
v and ω over time would be sufficient to reconstruct its
position. However, both random and systematic measurement
contributions tend to accumulate, thus leading to poor accuracy
in the long run. Therefore, in order to mitigate this problem,
such contributions should be properly included in the system
model and they should also be taken into account by the
chosen estimator. Observe that the state variables in s refer
to the midpoint of the front wheels, which is the position
where both the camera and the RFID are installed. However,
in practice, we are mainly interested in the position (xu, yu) of
the human pushing the walker. Assuming that his/her centroid
is reasonably aligned with the midpoint of the rear wheels, the
following transformation holds:

[
xu

yu

]
=

[
x − L cos θ
y − L sin θ

]
. (3)

Therefore, the localization problem described in this paper has
two complementary objectives:

1) estimating the coordinates (xu, yu) of the human with a
root mean square (RMS) Euclidean error no larger than
ηp with at least αp probability;

2) estimating the walker’s orientation angle θ with an
RMS error no larger than ηo with at least αo probability.

A. System Description

In nonideal conditions, the system model should explicitly
take those phenomena into account (such as undetected
encoder pulses, slight differences in wheels radius, mechanical
asymmetries, and noise), which make position and orientation
uncertainty grow indefinitely. As a result, the continuous-time
system model (1) can be changed as follows:

ṡ′ =

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
μ̇
δ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(1 + μ)v cos θ − Lω(1 + δ) sin θ
(1 + μ)v sin θ + Lω(1 + δ) cos θ

ω(1 + δ)
γμ

γδ

⎤
⎥⎥⎥⎥⎦

(4)

where the state vector s′ comprises not only s, but also the
additional variables μ and δ. These represent the relative
systematic offsets between the forward and angular velocity
values at a given time and the respective odometry-based
values. Observe that the time evolution of μ and δ relies on
functions γμ and γδ, which depend on specific features of
the system considered and should be determined through a
proper experimental characterization. For instance, if in (5)
γμ = γδ = 0, then μ and δ are just constant coefficients.
System (4) can be conveniently expressed as a function of the
angular velocity of the rear wheels

ṡ′ = g(s′)� + H� (5)

where � = [ωr , ωl ]T , � = [γμ, γδ]T

g(s′) =

⎡
⎢⎢⎢⎢⎣

cμ cos θ − Lcδ sin θ cμ cos θ + Lcδ sin θ
cμ sin θ + Lcδ cos θ cμ sin θ − Lcδ cos θ

cδ −cδ

0 0
0 0

⎤
⎥⎥⎥⎥⎦

.

cμ = r
2 (1 + μ), cδ = r

d (1 + δ), H = [02,3, I2]T , 0m,n is a
m ×n matrix filled with zeros, and In is the identity matrix of
dimension n. Note that g(·) in (5) is a nonlinear vector function
of the state. If (5) is discretized with sampling period Ts , the
corresponding discrete-time system becomes

s′
k+1 = s′

k + g
(
s′

k

)
��k + Ts H� (6)

where s′
k denotes the state vector at time kTs and

��k = �k Ts = [�	rk , �	lk ]T is the vector of the angle
displacements of the left and right wheels between kTs and
(k+1)Ts . Of course, the measured values of ��k are generally
affected by zero-mean random fluctuations εk = [εrk , εlk ]T

due to, for instance, vibrations, electronic noise, and finite
encoder resolution. Such random uncertainty contributions can



NAZEMZADEH et al.: INDOOR POSITIONING OF A ROBOTIC WALKING ASSISTANT FOR LARGE PUBLIC ENVIRONMENTS 2969

be reasonably assumed to be independent. Therefore, (6) can
be changed as follows:

s′
k+1 = s′

k + g
(
s′

k

)
(��k + εk) + Ts H�

= s′
k + g

(
s′

k

)̂
��k + Ts H� (7)

where ̂��k = [̂�	rk ,̂�	lk ]T is the vector of the angle
displacements measured between time kTs and time (k +1)Ts .

B. Measurement Model Description

As shown in (2), the output vector ok of the system in
principle should be equal to sk . However, in practice, not all
output quantities can be measured at every sampling time.

As explained in Section II, the c-Walker is equipped with
two encoders, a short-range RFID reader, a gyroscope, and
a front camera. While encoders and gyroscope can collect
data at a rate equal to 1/Ts , the RFID reader and the camera
can detect a tag or a marker only if they are within their
respective reading range. The identification (ID) code of each
tag corresponds to known coordinates in 〈W 〉, as shown
in Fig. 1(a). However, no information about orientation is
provided, since this generally cannot be measured through a
single tag detection, unless special antennas are used [28].

To solve this problem, the orientation angle is estimated
using both the gyroscope available inside an inertial measure-
ment platform (IMU), and the orientation data extracted from
the images collected from the camera, as shown in Fig. 1(b).
In fact, the relative orientation angle with respect to a given
initial value could be easily obtained by integrating the angular
velocity of the walker around axis Zw. However, the initial
orientation is not observable and, in addition, the noise of
the gyroscope also accumulates, thus potentially causing large
random walk fluctuations in the long run. This problem could
be addressed through a plain monodimensional Kalman filter.
The process noise of this filter can be assumed to have
zero-mean and standard deviation σωk = a|ωzk | + b, where
ωzk is the angular velocity measured by the gyroscope at
time kTs , while a and b are the constant coefficients. This
nonstationary model results from experimental evidence.
In fact, several tests performed on real gyroscopes using
an orbital rotator Stuart SB3 at various speeds in the
range 2–40 RPM showed that the standard deviation of the
gyroscope’s noise tends to grow linearly with the rotational
speed. Thus, the values of coefficients a and b can be easily
estimated through a linear fitting.

Using this model, the prediction equations of the
Kalman filter can be concisely written as follows:

θ̄+
k+1 = θ̄k + Tsωzk , σ 2+

θk+1
= σ 2

θk
+ T 2

s σ 2
ωk

(8)

where ·+ denotes the prediction, θ̄k is the angle estimated
at time kTs (not to be confused with the homonymous state
variable in s′

k), and σ 2
θk

is its variance. If no visual markers
are in the field of view of the camera (as it is supposed to
happen most times), then the Kalman filter is updated just
using the predicted values, i.e., θ̄k+1 = θ̄+

k+1 and σ 2
θk+1

=
σ 2+

θk+1
. If instead a visual marker is detected, the corresponding

frame is turned into a top-view image through the so-called

inverse perspective mapping (IPM) [32]. Since the features of
interest of the detected marker (e.g., an arrow) is associated
with the direction of axis Xw , the orientation of the walker
with respect to Xw is given by the angle between the line
bisecting longitudinally the top-view image and the direction
of the detected marker, as shown in Fig. 1(b). As a result, the
orientation angle and its variance are updated as follows:

θ̄k+1 = θ̄+
k+1 + σ 2+

θk+1

(
θ c

k+1 − θ̄k+1
)

σ 2+
θk+1

+ σ 2
θc

k+1

(9)

σ 2
θk+1

=
σ 2

θc
k+1

σ 2+
θk+1

σ 2+
θk+1

+ σ 2
θc

k+1

(10)

where θ c
k+1 and σ 2

θc
k+1

denote the angle measured by the
camera-based system and its variance at time (k + 1)Ts ,
respectively.

In conclusion, the overall measurement model is

ok = Cks′
k + ζ k (11)

where the output vector ok , the output matrix Ck , and the
vector ζ k of the measurement uncertainty contributions depend
on what sensor data are actually available at time kTs .
Evidently, the elements of ζ k can be regarded as independent,
as they are completely related to different sensors. Thus, the
covariance matrix Dk associated with ζ k is diagonal.

Ultimately, two scenarios are possible:
1) If no RFID tags are detected, then Ck =[0 0 1 0 0] and

Dk = σ 2
θk

. This is the variance of the orientation angle
estimated through the Kalman filter described above.

2) If instead an RFID tag is detected, then

Ck=
⎡
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎦, Dk=

⎡
⎣

σ 2
xk

0 0
0 σ 2

yk
0

0 0 σ 2
θk

⎤
⎦

(12)

where σ 2
θk

is, again, the variance of the angle estimated
with the previous Kalman filter, while σ 2

xk
and σ 2

yk
are the variances of the offsets between the nominal
coordinates of the detected tag and the actual coordinates
of the walker along axes Xw and Yw . Assuming, to a
first approximation, that the probability of reading a tag
is constant within the circle centered in the tag itself
and with radius R equal to the maximum nominal range
of the RFID reader, then the uncertainty contributions
associated with coordinates x and y are uncorrelated
and σ 2

xk
= σ 2

yk
= R2/4 [23].

IV. WALKER POSITION ESTIMATION AND TRACKING

In general, the state of a nonlinear system can be
efficiently estimated by an extended Kalman filter (EKF)
under the assumptions that: 1) the system and output model
nonlinearities are quite smooth and 2) the various uncertainty
contributions are normally distributed with a zero mean.
Since the potential nonzero relative velocity offsets modeling
encoder imperfections are now explicitly included in the
system, possible harmful biases can be introduced only by
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the RFID-based position measurements and/or by the camera-
based or gyroscope-based angular measurements. However,
in the domain of all possible trajectories, the mean values
of such uncertainty contributions can be reasonably assumed
to be zero. Also, their distribution generally exhibits a quite
Gaussian behavior [23], with the only exception of
the RFID tag detection mechanism that, as explained
in Section III-B, can be more realistically described by a
uniform probability density function with a quasi-circular
symmetry around a detected tag. Note that this issue does
not affect the validity of the EKF. Also, lack of stationarity is
not a problem for the EKF, as it works properly even when
the process and measurement noises change over time, as it
happens in the case considered.

Starting from these assumptions and with reference to
the discrete-time system (6), the predicted state estimate at
time (k + 1)Ts results from [33]

ŝ′+
k+1 = ŝ′

k + g(ŝ′
k)

̂��k (13)

where ŝ′
k = [x̂k, ŷk, θ̂k, μ̂k, δ̂k]T is the state estimated at

time kTs . Observe that �k is omitted in (13), because the mean
value of this term is zero. The covariance matrix associated
with the predicted state simply results from the linearization
of (6)

P+
k+1 = Fk Pk FT

k + Gk Qk GT
k + HUk H T (14)

where Pk , Qk , and Uk are the covariance matrices associated
with the estimated state, to εk and to �k , respectively; and
Fk is the Jacobian of the state-space model with respect
to s′

k at [ŝ′
k,

̂��k]

Fk = ∂
[
s′

k + g(s′
k)��k

]

∂s′
k

∣∣∣∣[ŝ′
k ,

̂��k

]

=

⎡
⎢⎢⎢⎢⎣

1 0 f1 f2 f3
0 1 f4 f5 f6
0 0 1 0 f7
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(15)

with

f1 = −cμ̂k sin θ̂k(̂�	rk +̂�	lk )−Lĉδk
cos θ̂k(̂�	rk −̂�	lk )

f2 = r

2
cos θ̂k(̂�	rk +̂�	lk )

f3 = −L
r

d
sin θ̂k(̂�	rk −̂�	lk )

f4 = cμ̂k cos θ̂k(̂�	rk +̂�	lk ) − Lĉδk
sin θ̂k(̂�	rk −̂�	lk )

f5 = r

2
sin θ̂k(̂�	rk +̂�	lk )

f6 = L
r

d
cos θ̂k(̂�	rk −̂�	lk )

f7 = r

d
(̂�	rk −̂�	lk )

and, finally, Gk = g(ŝ′
k) since the model is linear with respect

to the inputs.
Consider that Uk in the following will be neglected as the

drift coefficients in �k are assumed to be purely deterministic.
On the contrary, Qk depends on the performances of the

chosen encoders. Since they are nominally identical, but
independent, their uncertainty contributions can be assumed
to be independent as well. Therefore, Qk is a 2 × 2 diagonal
matrix with σ 2

rk
and σ 2

lk
on the main diagonal. It is worth

emphasizing that, to a first approximation, the standard
deviation of the angular displacements measured by the
right- and left-wheel encoder can be reasonably assumed
to linearly grow with their respective angular velocities,
i.e., σrk = σeωrk Ts and σlk = σeωlk Ts .

The Kalman filter gain is then given by [33]

Kk+1 = P+
k+1CT

k+1

(
Ck+1 P+

k+1CT
k+1 + Dk+1

)−1 (16)

where Ck+1 and Dk+1 depend on the measurement data
available at time (k+1)Ts , as explained in Section III-B. Thus,
the Kalman gain (16) and the set of measurement data ok+1
collected at time (k +1)Ts are used to update the system state
estimate and the corresponding covariance matrix

ŝ′
k+1 = ŝ

′+
k+1 + Kk+1

(
ok+1 − Ck+1 ŝ

′+
k+1

)

Pk+1 = (I3 − Kk+1Ck+1)P+
k+1. (17)

It is worth reminding that the position of the user at time kTs is
not given by (x̂k, ŷk), but rather by (x̂uk , ŷuk ) which is obtained
by replacing (x̂k, ŷk, θ̂k) into (3).

V. SIMULATION-BASED ANALYSIS

The accuracy of the dynamic estimator described
in Section IV has been evaluated through several Monte Carlo
simulations over hundreds of random paths of various lengths.
No obstacles or walls (except for the perimeter fence) have
been used to constrain the generated paths. Therefore,
the performances of the algorithm have been tested in all
directions and at different linear and angular velocities,
i.e., for v ∈ [0, 2] m/s and ω ∈ [−1, 1] rad/s. These intervals
are indeed compatible with a typical human behavior. The
values of the simulation parameters of encoders, gyroscope,
RFID reader, and camera have been obtained either from
data sheets or from a preliminary characterization of the
sensors and devices actually used in the development of the
c-Walker prototype [23]. The list of such devices is reported
in Section VI. For the sake of completeness, the values of the
simulation parameters are listed as follows:

1) encoder and gyroscope sampling period: Ts = 4 ms;
2) standard uncertainty of encoder angular increments:

σrk = 0.066�	rk+ 0.005 and σlk = 0.066�	lk+ 0.005;
3) standard deviation of the angular velocity values

measured by the gyroscope (normally distributed):
σωzk

= 0.15|ωzk | + 0.08 rad/s;
4) standard deviation of the camera-based orientation

measurements (normally distributed): σθc
k

≈ 30 mrad,
with a maximum marker detection range of 1.2 m and
a maximum forward angle view of 0.7 rad;

5) RFID tag detection radius (circular symmetry):
R = 15 cm with a tolerance of ±1 cm;

6) forward velocity drift coefficient: μ ≈ 0.015;
7) angular velocity drift coefficient: δ ≈ −0.01.

The elements of the covariance matrix of the estimated state
are initialized to unrealistically large values since no a priori
information is available at time 0.
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Fig. 2. Box-and-whisker plots of (a) xu , (b) yu , and (c) θ estimation errors
in 200 random trajectories, assuming to use the grids of RFID tags and
visual markers of different granularity [i.e., 25 pairs of (DR, DM ) values with
DR and DM ∈ {1, 2, 3, 4, 5} m].

In the first set of simulations, 200 random trajectories of
180 s each have been generated in a large open room, assuming
to use two independent grids of equally spaced tags and
markers of different granularities. If DR and DM denote the
distances between pairs of adjacent RFID tags and markers,
respectively, the state estimation errors for each trajectory
have been computed in 25 different configurations, obtained
with both DR and DM ∈ {1, 2, 3, 4, 5} m. Fig. 2(a)–(c)
shows the box-and-whisker plots of the xu , yu , and
θ estimation errors for different pairs of DR and DM .
Observe that, with the chosen values of the simulation
parameters, the accuracy of both position and orientation
estimation degrades quite quickly as the distance between tags

or markers grows. Consider also that for DM = 1 m, a visual
marker is almost always in the reading range of the camera.
Therefore, the average update rate is high, thus drastically
improving the performances. When either DR or DM ranges
between 1 and 3 m, the xu or yu estimation errors are generally
within ±50 cm, with a few outliers in the order of ±1 m.
In addition, in the same conditions, the orientation estimation
errors are generally within ±0.15 rad. Further simulation
results (not shown for the sake of brevity, but qualitatively
quite similar to those reported in [21]) confirm that including
in the model the drift coefficients of forward and angular
velocity (i.e., variables μ and δ) provides better accuracy
than using an EKF with just three state variables (i.e., x , y,
and θ only). This result is expected since, in the latter case, the
systematic velocity-dependent uncertainty contributions due to
walker asymmetries and encoders differences are not estimated
and compensated grids.

A crucial point that has to be addressed in view of deploying
the proposed solution in a real environment is the optimal
selection of the values of DR and DM . In theory, DR and DM

should be chosen in such a way that the total number of
tags and markers in the environment is minimum and the
wanted position and orientation accuracy boundaries are met,
as specified in Section III. Unfortunately, an analytical
formalization and a solution to this optimization problem are
challenging, and they deserve a study on its own, which
is out of the scope of this paper. RFID tags and visual
markers have a crossed random effect on EKF updates. The
RFID tags are conceived to adjust the position, but they also
partially contribute to correct the orientation angle through the
Kalman gain (16). Dually, even if the visual markers mainly
adjust the estimated orientation angles, they also indirectly
affect the position values. Thus, the solution to the placement
optimization problem depends not only on the granularity of
grids of tags and markers, taken individually, but also on their
combination. The problem is further complicated by the need
to define a realistic and tractable stochastic model describing
user’s trajectories.

In order to find a solution, at least suboptimal, to
this challenging problem, a numerical approach based on
Monte Carlo simulations has been adopted. The proposed
procedure consists of the following two steps.

1) At first we can find the maximum values of DR and DM

(denoted as DRp and DMp , respectively) for which the
RMS position error (expressed in terms of Euclidean
distance from the actual position) is smaller than or
equal to ηp with (at least) αp probability.

2) Afterwards, a dual approach can be used to determine
the maximum values of DR and DM (denoted as DRo

and DMo , respectively) for which the RMS orientation
error is smaller than or equal to ηo with (at least) αo

probability.

Eventually, the suboptimal values of the distances between
pairs of markers and tags can be obtained by simply choosing
the more conservative solution in either, i.e.,

D∗
R = min{DRp , DRo } and D∗

M = min{DMp , DMo}. (18)
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Fig. 3. (a) RMS Euclidean distances between the estimated and actual
positions as a function of the traveled distance when the RFID reader is
disabled and DM ∈ {1, 2, 3, 4, 5} m. (b) Cumulative distribution functions
associated with the probability to meet an RFID tag as a function of the
traveled distance from a previous tag when DR ∈ {1, 2, 3, 4, 5} m.

To address the first problem, assuming to disable the
RFID reader only, the RMS values of the Euclidean distances
between the estimated and actual positions have been
calculated as a function of the path length over 500 random
routes for DM ∈ {1, 2, 3, 4, 5} m. The respective RMS position
error curves are shown in Fig. 3(a). At the same time, the
cumulative distribution functions associated with the proba-
bility for the walker to meet an RFID tag as a function of the
traveled distance from a previous tag are plotted in Fig. 3(b)
for DR ∈ {1, 2, 3, 4, 5} m. Fig. 3(a) allows to determine
DMp and the distance dp that the walker can cover prior to
exceeding threshold ηp . Once dp and DMp are known, the
value of DRp is given by the cumulative distribution function
for which the αp-percentile of detecting an RFID tag is equal
to dp. For instance, in Fig. 3(a) and (b), the horizontal dashed
lines refer to ηp = 50 cm and αp = 95%, respectively.
Such values meet the requirements of the DALi project.
In particular, if ηp = 50 cm and DMp ≈ 2 m, it results
from Fig. 3(a) (vertical dashed line) that dp ≈ 33 m. Thus,
it immediately follows from Fig. 3(b) that, when dp ≈ 33 m,
then DRp ≈ 2 m.

A dual record of Monte Carlo simulations has been
performed to build the RMS orientation error curves as
a function of the path length for DR ∈ {1, 2, 3, 4, 5} m,
assuming that the front camera is disabled. Such curves are
shown in Fig. 4(a). Also, the cumulative distribution functions
associated with the probability to meet a visual marker as
a function of the traveled distance from a previous marker

Fig. 4. (a) RMS values of the orientation errors as a function of the
traveled distance when the camera is disabled and DR ∈ {1, 2, 3, 4, 5} m.
(b) Cumulative distribution functions associated with the probability to meet
a visual marker as a function of the traveled distance from a previous marker
when DM ∈ {1, 2, 3, 4, 5} m.

are plotted in Fig. 4(b) for DM ∈ {1, 2, 3, 4, 5}. Observe that
these curves differ from those shown in Fig. 3(b), because the
detection range of RFID reader and camera is also different.
The approach to estimate DRo and DMo is dual to the one
described above. At first, the distance do that the walker
can cover prior to exceeding ηo and the corresponding value
of DRo can be obtained from Fig. 4(a). Then, DMo can be
estimated from Fig. 4(b) by finding the largest value of DM

for which the probability of meeting a marker after do meters
is at least αo. If, for instance, ηo = 0.15 rad and αo = 95%
(also these values are compliant with the requirements of the
DALi project) Fig. 4(a) shows that do ≈ 11 m when DRo ≈
5 m. Therefore, it results from Fig. 4(b) that for the same
do value DMo ≈ 2 m. Ultimately, it follows from (18) that
the distance between pairs of adjacent RFID tags and markers
should be so conservatively set equal to D∗

R ≈ D∗
M ≈ 2 m.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The position tracking algorithm described in Section III
was tested on a real c-Walker prototype (Fig. 5) in the
laboratories of the Department of Industrial Engineering
of the University of Trento. The data from the CUI Inc.
AMT10X encoders installed on the rear wheels as well as the
samples from an Invensense IMU-3000 gyroscope on-board of
the IMU already used in [16] are transferred to a Beaglebone
embedded platform via CAN bus at 250 Hz. The Beaglebone
is equipped with an AM335× ARM Cortex A8 processor



NAZEMZADEH et al.: INDOOR POSITIONING OF A ROBOTIC WALKING ASSISTANT FOR LARGE PUBLIC ENVIRONMENTS 2973

Fig. 5. c-Walker prototype.

running at 720 MHz and 256 MB of DDR2 RAM. The
operating system on-board of the Beaglebone is a
Debian Linux distribution with kernel v.3.2 patched with the
RT-Preempt package to improve determinism and real-time
performance. The Beaglebone also collects the data from a
Feig ISC.MR101 RFID reader through a USB connection.
Data acquisition and processing are implemented in
C language. All the components above are powered by a
12 V 7-Ah lead-acid battery. The preprocessed measurement
results, aligned on the same timescale, are transferred
via Ethernet to a laptop PC equipped with a 2.26-GHz
Intel Core 2 Duo processor and 2 GB of DDR2 RAM. The
operating system running on the PC is a standard Ubuntu
Linux. A PSeye USB webcam is directly linked to the PC
and it is activated with a resolution of 640 × 480 pixels at a
rate of just 10 Hz, to reduce both communication bandwidth
requirements and computational burden. The program for
visual marker recognition is implemented in C++ using the
primitives of the well-known OpenCV library. The position
estimation and tracking algorithm is instead implemented in C.
For testing and debugging reasons, at the moment both this
algorithm and the software application visualizing the motion
of the c-Walker on a map run on the laptop. However,
in a future version of the c-Walker, they will be ported to
a high-performance embedded system with a smaller form
factor.

The area chosen for the experimental activities is a large
room of about 300 m2 in the basement of the Department
of Industrial Engineering. The room was instrumented with
RFID tags and markers put on the floor. In all experiments,
D∗

R ≈ D∗
M ≈ 2 m in accordance with the simulation-

based results described in Section V. All visual markers were
directed as axis Xw. About 50 experiments of a different
duration were conducted with the c-Walker pushed at various
speeds and along different routes, both throughout the empty
room and with some obstacles on the way to emulate realistic
scenarios. In order to evaluate the accuracy of the position
tracking technique, a laser scanner SICK S300 Expert was

Fig. 6. Two examples of estimated trajectories (solid lines) in two different
scenarios: (a) hall of a shopping mall and (b) some aisles of a supermarket.
The dashed lines are the actual routes of the c-Walker reconstructed from the
laser scanner data after smoothing. The uncertainty of such trajectories is in
the order of a few centimeters.

placed in the origin of reference frame 〈W 〉 (i.e., in one corner
of the room) to measure the coordinates of the user along each
route in real time. The laser scanner has an angular resolution
of 0.5°, a maximum scanning angle of up to 270° (but this was
limited to 90° to increase the scanning rate), and a maximum
reading range of about 30 m. According to the instrument
specifications, the ranging measurement accuracy depends on
the size of the object and degrades as the distance from the
target grows. Thus, to keep the positioning uncertainty of the
laser-based system at least one order of magnitude smaller
than the uncertainty of the system under test (i.e., in the order
of a few centimeters), most of the experiments were conducted
over just 150 m2 of the available space. Also, the scanner was
put on top of a 2-m-high shelf to detect just the head of the
user instead of the whole c-Walker. In this way, the cluster
of points collected from the scanner at a given time is quite
concentrated around (xu, yu) and finding the position of the
centroid of the cluster is simpler. The coordinates of such a
centroid provide a reasonably accurate estimate of the position
of the user.

Fig. 6(a) and (b) shows the results of two experiments in two
possible scenarios recreated artificially in the room, i.e., the
entrance hall of a shopping mall (scenario a) and the aisles
of a supermarket (scenario b). The purpose of these pictures
is mainly qualitative to show the correct operation of the
localization system. The solid lines represent the estimated
trajectories, whereas the dashed lines refer to the routes
reconstructed using the scanner data. The sporadic adjustments
in position or orientation due to tag or marker detection
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Fig. 7. Differences (as a function of time) between the values of x̂u , ŷu ,
and θ̂ estimated by the c-Walker positioning system and the corresponding
values measured with the laser scanner during a 10-min long experiment.

are quite evident. At a glance, the positioning uncertainty is
generally well below 50 cm and always smaller than 1 m.

Fig. 7 shows the differences between the values of x̂u , ŷu ,
and θ̂ estimated by the c-Walker positioning system and the
corresponding values measured with the laser scanner during
a travel of about 10 min in the empty room. The error patterns
are not white, but the position uncertainty in x and y is
generally well below ±50 cm even in the long run. Similar
considerations also hold for the orientation uncertainty, which
is generally bounded within ±0.15 rad, as expected. The most
interesting outcome of this experiment is the substantial lack
of drift phenomena.

Fig. 8(a)–(c) shows the histograms of the values of x̂u − xu ,
ŷu − yu , and θ̂ − θ , respectively, collected in seven further
experiments. In each of them, the user continuously pushes
the c-Walker in all directions for at least 350 s without
meeting any obstacle. Due to the quite high sampling rate
(i.e., 250 Hz), the total number of data is very large, in the
order of 5 × 105 samples. Even if the estimated probability
density functions seem to be Gaussian, a more careful analysis
based on normal probability plots (not reported for the sake of
brevity) shows that they are not. However, all distributions are
quite symmetric with a mean value equal to 0 and standard
deviations equal to 18 cm (for both xu and yu) and 0.06 rad
for θ , respectively.

Finally, Table II summarizes the results of a more exhaustive
characterization performed over a set of about 70 experiments
of about 180 s each, with the walker moving in the room both
with and without obstacles. The values in Table II are the
median as well as the 75th, 95th, and 99th percentiles of the
RMS position and orientation errors, respectively, in steady
state. This is supposed to be reached after a few adjustments
performed through RFID tag or marker detection. Like in
Section V, the individual position error values are given by
the Euclidean distance between the coordinates measured by

Fig. 8. Histograms of the values of (a) x̂u − xu , (b) ŷu − yu , and
(c) θ̂ − θ collected in seven experiments of at least 350 s each.

TABLE II

MEDIAN VALUE, AS WELL AS 75TH, 95TH, AND 99TH PERCENTILES

OF THE RMS (EUCLIDEAN) POSITION AND ORIENTATION

ERRORS IN STEADY-STATE CONDITIONS OVER ABOUT

70 DIFFERENT ROUTES OF 180 s EACH

the laser scanner at a given time and the estimated trajectory at
the same time. It is worth noting that the 95th percentiles are
compliant with the wanted specifications and with the results
of the simulation-based design reported in Section V. In fact,
the RMS position and orientation errors are smaller or equal to
50 cm and 0.15 rad, respectively, with at least 95% probability.

VII. CONCLUSION

In this paper, a positioning algorithm for wheeled devices
is presented and characterized experimentally. The proposed
solution has been developed and implemented for a smart
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walker assisting older adults to safely navigate in large and
complex public environments. However, it can also be used
with minor modifications in different contexts, e.g., robotics.
The algorithm relies on odometry and multisensor data fusion,
namely, on an EKF that estimates position and orientation,
while compensating for the angular and forward velocity
systematic drifts caused by possible asymmetries or differ-
ences between the left- or right-side encoders and wheels.
Passive RFID tags and simple visual markers on the floor
provide accurate and sporadic adjustments in position and
orientation, respectively. A conservative criterion is described
to minimize the number of such devices (or, dually, to
maximize the distance between them), while keeping the
position and orientation uncertainty within given boundaries.
Compared with other RFID-based solutions, the proposed
approach requires grids with a coarser granularity (i.e., less
devices in the environment) and comparable performances
(accuracy on the order a few tens of centimeters in the long
run). Several experiments on the field confirm that the system
meets such requirements with a high level of confidence.
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