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Abstract—Many techniques for robot localization rely on
the assumption that both process and measurement noises are
uncorrelated, white and normally distributed. However, if this
assumption does not hold, these techniques are no longer optimal
and, in addition, the maximum estimation errors can be hardly
kept under control. In this paper, this problem is addressed by
means of a tailored Extended H∞ filter (EHF) fusing odometry
and gyroscope data with position and heading measurements
based on Quick Response (QR) code landmark recognition. In
particular, it is shown that, by properly tuning EHF parameters
and by using an adaptive mechanism to avoid finite escape
time phenomena, it is possible to achieve a higher localization
accuracy than using other dynamic estimators even if QR codes
are detected sporadically. Also, the proposed approach ensures
a good trade-off in terms of computational burden, convergence
time and deployment complexity.

Index Terms—Localization, robotics, position measurements,
sensor fusion, estimation, H∞ filters.

I. INTRODUCTION

Position estimation and tracking is essential for robots navi-
gation as well as to manage formations of multiple robots [1].
Over the last few years, a variety of sensing solutions has been
proposed to determine the absolute position of targets moving
indoors. At the moment, none of the solutions above outper-
forms the others in all aspects. Most of the techniques based
on radio-frequency [2], optical [3], or ultrasonic signals [4]
require to place fixed reference nodes at known coordinates
in a given environment. Moreover, such solutions generally
suffer from scalability issues. Possible alternative techniques
solving this problem at its source are those based on LiDAR
systems or cameras able to recognize specific landmarks in
the environment [5], [6]. However, even if LiDAR systems
can assure high ranging accuracy (e.g. in the order of a few
cm for distances up to tens of meters) [7], generally they are
also quite expensive. Moreover, performance may drop due
to interference problems when many devices are used in the
same environment or in the presence of mirror reflections [8].

The vision-based egomotion techniques are generally quite
heavy from the computational point of view and also suffer
from robustness problems due to their sensitivity to changeable
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light conditions and to the type of landmarks. Nonetheless,
such techniques are commonly used for Simultaneous Local-
ization and Mapping (SLAM) [9]. If the landmarks are easy
to detect and if their density in the environment is reasonably
low, the data fusion of vision-based measurements and dead
reckoning could be a viable solution to achieve accurate,
scalable and trustworthy localization [10]–[12]. This is indeed
also the basic idea underlying the technique described in
this paper. In particular, the proposed approach relies on an
extended H∞ filter (EHF) fusing odometry and gyroscope data
with sporadic absolute position and heading values estimated
in one-shot by measuring distance and angular offsets from
Quick Response (QR) codes stuck regularly on the floor.

Most of Bayesian position estimators of moving targets
rely on Kalman filters (KF), extended Kalman filters (EKF),
unscented Kalman filters (UKF) or particle filters (PF). For
instance, they can be used either to merge heterogeneous
odometer and inertial measurement data [13], or to mitigate the
uncertainty growth due to Inertial Measurement Units (IMU)
through additional contextual information [14]. As known,
KFs and EKFs are optimal when the underlying models are
linear or weakly nonlinear, respectively, and they are affected
by normally-distributed, uncorrelated and white noise contri-
butions. In the case of strongly nonlinear systems, the UKFs
generally provide better results than EKFs, as they usually
rely directly on nonlinear models. When instead the process
and/or the measurement noise are far from being normally
distributed or white, an effective alternative is the PF [15].
Unfortunately, the inherent heuristic nature of this class of
algorithms does not allow to keep the maximum estimation
error under control. In addition, PF computational complexity
usually grows with the number of particles. Therefore, a trade-
off between convergence time and processing burden has to
be found. A possible solution to this problem is offered by
the EHF. Similarly to PFs, EHFs do not rely on the upfront
knowledge of noise distributions and do not require noises to
be white. However, they are purposely designed to minimize
the worst-case estimation error with maximum likelihood [16].
For this reason, the use of H∞ filters for robot localization has
become increasingly interesting over the last few years, e.g.
in [17], [18]. However, the system and measurement models
used in [17], [18] are different from those adopted in this
paper. Particularly, none of them rely on intermittent and
sporadic vision-based measurements. Therefore, no adaptive
mechanisms are needed to avoid finite escape time phenomena
like in the case at hand.

In the rest of this paper, after a short review of various
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localization techniques based on vision systems and data
fusion (Section II), first the system and measurement models
are described in Sections III and IV, respectively. Then, in
Section V the proposed EHF algorithm is presented. Finally,
Sections VI and Section VII describe the experimental setup
and the corresponding results.

II. RELATED WORK

In general, vision-based localization relies on one or more
cameras as well as on image processing algorithms recogniz-
ing suitable visual landmarks. Such landmarks can provide
a variety of information, i.e. images that can be matched
with those available in a database of the considered en-
vironment [19], features that can be used to estimate the
egomotion of the robot [12], [20], or position and orientation
data directly [10], [21]. The first approach is completely
different from the general idea of this paper, as it requires
both a preliminary exploration of the environment and large
computational resources for image processing and matching.

The solutions based on image feature extraction typically
rely on sequences of images to determine the motion (e.g. the
velocity) of a robot. For instance, in [20] an egomotion method
fusing optical flow and inertial measurements through an UKF
is proposed. In [12] a monocular camera with the optical
axis approximately parallel to the gravity field is mounted on
an IMU. In this case, the landmarks are the ground feature
points detected in consecutive images collected by the camera.
Again, data fusion is based on an UKF. The main benefit of
this solution is that it does not rely on optical flow and it
is independent of the underlying vision algorithm. In all the
solutions of this kind, the velocity measurement uncertainty is
kept bounded. However, the position estimation error usually
still tends to grow unboundedly, although at a much slower
rate than using the inertial data alone.

The custom indoor adaptive localization algorithm described
in [22] tackles these problems, as it exhibits good convergence
and a stable steady-state error. It relies on the fusion of vision-
based measurements, odometry and inertial data. However,
the computational burden is remarkable, as the algorithm
requires a graphics processing unit (GPU) and a parallel
implementation to provide real-time performance.

The main advantage of the techniques estimating position
and heading directly from the landmarks is the reduced
computational effort. In general, serious robustness problems
may arise if the information encoded in the landmarks is
not easy to detect. In [11] and [10], ad-hoc 2D landmarks
are placed on the ceiling to mitigate the effect of possible
obstacles. However, while in [11] localization is based on
image processing only, the solution in [10] relies on an EKF
that combines the information extracted from the landmarks
with the data measured by two encoders and one gyroscope.
This approach is similar to the technique described in this
paper, but with various differences. First, the system model
is different. Second, the EKF relies on the assumption that
both the process noise and the measurement uncertainty are
normally distributed and white. This is sometimes merely a
leap of faith, as it will be shown in Section VI-B. Finally,

the landmarks used in [10] are custom and placed on the
ceiling (which is not always possible, e.g. in places with high
ceilings like airports or shopping malls), while in this paper
standard QR codes are stuck on the floor and are detected
by a low-cost camera. The idea of using QR codes as visual
landmarks is not completely new [23]–[25], since they can be
easily and robustly detected in the environment using standard
software tools. For instance, the solution described in [25]
relies on a fine-grained grid of QR codes placed on the ceiling.
While the method to extract absolute position and orientation
from QR codes is similar to the one described in this paper,
the overall approach is completely different. In [25], robot
localization relies solely on QR code detection. Therefore, at
least one landmark must be in the field of view of a high-
frame-rate camera at any time. On the contrary, in this paper
robot positioning is based on the fusion of sporadic QR code
readings and encoder or gyroscope data. In this way, QR code
grid granularity can be traded for positioning accuracy, as it
will be shown in Section VII-B.

The technique described in this paper provides also a signif-
icant advancement with respect to the localization technique
described in [26]. In [26] the planar position of the wheeled
device was measured by reading one of the passive RFID tags
deployed in the environment, with the vision system being
used just to estimate the heading of the device with respect to
the direction pointed by arrow-shaped landmarks. In this paper
instead, absolute position and heading are extracted directly
from QR codes, thus simplifying the experimental setup and
making image processing simpler and faster. Moreover, the
proposed estimation algorithm is optimal in a minimax sense,
even under the effect of unknown measurement uncertainty
distributions and unmodelled dynamic phenomena.

III. SYSTEM MODEL

A qualitative overview of the localization problem consid-
ered in this paper is shown in Fig. 1 and it can be potentially
applied to any unicycle-like wheeled robot. Two encoders, a
gyroscopic platform and a front monocular camera are used
to estimate the position of the robot within a given reference
frame 〈W 〉 = {Xw, Yw, Zw}. In the following, the reference
point chosen to define the robot’s position in 〈W 〉 is the mid-
point of the axle between the rear wheels, where the encoders
used for odometry are actually installed. In order to keep into
account the systematic errors affecting the odometry-based
linear and angular velocity values, the state vector of the
system describing the robot’s kinematic is defined as follows,
i.e. s = [x, y, θ, µ, δ]T where (x, y) are the planar coordinates
of the reference point, θ is the heading of the robot with respect
to Xw, and µ and δ are the relative systematic offsets affecting
the linear and angular velocities of the robot in the reference
point. As a result, if r denotes the wheels radius and d is the
length of the wheels axle, the augmented unicycle-like model
describing the kinematic of the robot with odometry is

ṡ = f(s)Ω, (1)
o = h(s)
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Fig. 1. Overview of mobile robot localization within the fixed reference frame
〈W 〉 = {Xw, Yw, Zw}.

where

f(s) =


r
2 (1 + µ) cos θ r

2 (1 + µ) cos θ
r
2 (1 + µ) sin θ r

2 (1 + µ) sin θ
r
d (1 + δ) − rd (1 + δ)

0 0
0 0

 , (2)

Ω = [ωr, ωl]
T is the input vector including the angular

velocities ωr, ωl of the right and left wheel, respectively, and
finally h(·) denotes a generic nonlinear output function of the
state (see Section IV for details). Observe that in (2) µ and
δ are assumed to be constant. To a first approximation, this
is a sound assumption, as the systematic deviations affecting
the angular displacements measured by the wheels encoders
tend to increase linearly with velocity, as it is shown in Sec-
tion VI-B, and particularly in Tab. II. It is worth noticing that
including µ and δ in the state vector is important to estimate
(and to partially compensate for) the drift of odometry-based
measurements when dynamic state estimators are used.

If (1) is discretized using the Euler method with period Ts
(which guarantees that the induced modeling errors are smaller
than the encoders uncertainties in the setup described in
Section VI) and if the process noise (e.g. due to both encoders
and robot vibrations) is included in the model, then (1) can
be rewritten as

sk+1 = sk+f(sk)∆̂Φk, (3)
ok = h(sk)

where sk represents the state vector at time kTs and ∆̂Φk =
∆Φk + εΦ,k is the vector of the noisy input quantities.
In particular, the vector ∆Φk = ΩkTs = [∆Φrk , ∆Φlk ]T

includes the actual angular displacements of the left and right
wheels, respectively, between time kTs and (k + 1)Ts, while
εΦ,k is the corresponding random noise vector.

IV. MEASUREMENT TECHNIQUES AND MODELS

In this paper two measurement systems are used to mitigate
the accumulation of odometry uncertainty, i.e.
• a vision system consisting of a monocular front camera;

• a gyroscope-based platform.
The role of the vision system is to detect one of the QR
codes stuck on the floor. Without loss of generality, in the
following it will be assumed that the QR codes are placed
on a regular square-patterned lattice, with the side of each
square equal to D, as shown in Fig. 1. Each QR code
represents a number which is univocally associated with a
triple of values, i.e. the planar coordinates (xq, yq) of the
point in the center of the landmark, and its orientation angle
θq with respect to Xw. Consider that only when one of the
QR codes is in the field of view of the camera, the encoded
information is actually available. Therefore, such measurement
data are inherently intermittent and sporadic. Further details
on QR code implementation and placement are reported in
Section VI-A. With reference to Fig. 1, let ∆xc and ∆yc be
the distances between the camera and the detected QR code
in the camera frame. Also, let ∆θc be the angle difference
between the camera optical axis and θq . The values of such
quantities can be measured using standard image processing
algorithms, e.g. based on homography [27]. The details of
such measurement techniques are out of the scope of this
paper. However, it is important to emphasize that if the points
of the landmark to be detected are coplanar and if the QR
code dimensions are known a priori, the homography-based
techniques ensure a robust estimation of ∆xc, ∆yc and ∆θc,
regardless of the actual position and orientation of the camera.
In the following the measured quantities will be denoted with
“hatted” symbols, i.e. ∆̂x

c
= ∆xc+ζcx, ∆̂y

c
= ∆yc + ζcy and

∆̂θ
c
=∆θc+ζcθ where ζcx, ζcy and ζcθ represent the measurement

uncertainty terms associated with the respective quantities. An
experimental analysis of the distributions of ζcx, ζcy , ζcθ in the
case at hand is reported in Section VI-B.

Given that ensuring high-rate and good heading esti-
mates can greatly improve localization accuracy in the long
term [28], an additional gyroscope-based platform is used. To
keep the total heading measurement uncertainty bounded, the
vision-based angle measurements can be used to adjust the
yaw angular displacements estimated from the integration of
gyroscope data (see Section IV-B).

A. Position measurements

As explained above, the vision system is used to measure
the distances ∆xc and ∆yc between the camera and the point
(xq, yq) associated with the center of a detected QR code.
However, if the camera is not co-located in the reference point
used to define the position of the robot (as it typically occurs in
practice), the coordinates of the reference point are functions
of ∆xc and ∆yc through a constant rigid transformation. In
particular, if lcx and lcy denote the constant coordinates of the
reference point in the camera frame, then

ock=hc(sk)=

[
(xq−xk) cos θk+(yq−yk) sin θk+lcx
−(xq−xk) sin θk+(yq−yk) cos θk+lcy

]
. (4)

Moreover, if the elements of ock are measured, then the
corresponding measurement model becomes

ôck=

[
∆̂x

c

k

∆̂y
c

k

]
= hc(sk) + ζck (5)
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where ζck = [ζcx,k, ζ
c
y,k]T is the vector of measurement uncer-

tainty contributions at time kTs.

B. Heading measurements
Let q = [θg, bg]T be a vector composed by the yaw

angle θg and the relative angular velocity error bg associated
with the gyroscope-based platform. If bg is assumed to be
approximately constant and is not properly estimated and com-
pensated, then the angular velocity observed by the gyroscope
is affected by a systematic deviation proportional to ω. The
results in Section VI-B will show that this assumption is
supported by experimental evidence. If the sampling period of
the gyroscope is Ts, then the discretized heading measurement
model is

qk+1=

[
θgk+1

bgk+1

]
=

[
θgk+Ts(1+bgk)ωk

bgk

]
+εgk

oθk=hθ(θgk)

(6)

where εg denotes the noise introduced by the gyroscope-based
platform and hθ(·) is the output function. In practice, this
depends on the yaw angle only, since bg usually cannot be
observed. If the vision system is used to measure ∆θc, then it
can be easily shown that oθk=hθ(θgk)=∆θck=θq−θgk, as shown
in Fig. 1. Therefore, the corresponding measurement equation
becomes ôθk=∆̂θ

c

k=oθk + ζck, ζck being the angle measurement
error due to the vision system at time kTs. If the elements
of εg and ζc are uncorrelated and normally distributed with
zero mean, the values of q can be optimally estimated by an
EKF based on (6). As known, an EKF relies on two iterative
steps (namely, prediction and update) applied to the linearized
dynamic [29]. In this case, the equations of the prediction step
are

q̂+
k+1 = q̂k + g(q̂k)ω̂k,

Q+
k+1 = AkQkA

T
k +Bkσ

2
ω,kB

T
k ,

(7)

where q̂k and q̂+
k+1 denote the estimated and predicted state,

respectively, g(q̂k)=

[
Ts(1 + b̂gk)

0

]
is the input function, ω̂k is

the angular velocity value given by the gyroscope-based plat-

form at time kTs, Ak =

[
1 Tsω̂k
0 1

]
and Bk =

[
Ts(1 + b̂gk)

0

]
are the Jacobians of the process model (6) with respect to
q and ω, respectively, computed at (q̂k, ω̂k); Qk and Q+

k+1

are the estimated and predicted state covariance matrices and,
finally, σ2

ω,k is the variance of the gyroscope noise at time
kTs. By using the same notation, the update step equations of
the EKF are

Kθ
k+1 = Q+

k+1C
T
(
CQ+

k+1C
T + σ2

θc,k+1

)−1

q̂k+1 = q̂+
k+1 +Kg

k+1(ôθk+1 − Cq̂+
k+1)

Qk+1 = (I2 −Kθ
k+1C)Q+

k+1

(8)

where Kθ
k+1 is the Kalman gain, C =

[
−1 0

]
is the system

output matrix and σ2
θc,k+1 is the variance of ζcθ . Note that if

no landmark is detected at time kTs, no update is possible. So
the EKF works in open loop. Observe that the first element of
q̂k is the heading value estimated at time kTs to be injected
in the overall measurement model, while the element (1, 1) of
Qk is the corresponding heading estimation variance σ2

θ,k.

C. Overall measurement model

The models described in Sections IV-A and IV-B pave
the way to the definition of the overall measurement model
equations. Observe that, in the case considered, θ̂k = θ̂gk =
θk + ζgθ,k, where ζgθ,k is the heading estimation error resulting
from (8) with variance equal to σ2

θ,k. Therefore, depending on
whether a QR code is detected or not, it follows immediately
from (4)-(5) and (7)-(8) that

ôk=h(sk)+ζk=


[
hc(sk)
θk

]
+

[
ζck
ζgθ,k

]
if QR is detected

θk+ζ
g
θ,k if QR is not detected

(9)
where ζk is the vector including all the measurement uncer-
tainty contributions, while hc(sk) and ζck are defined as in (5).

V. STATE ESTIMATION ALGORITHM

As known, H∞ filters provide an optimal approach to
improve robustness to unmodelled noise and dynamics. In the
case considered, the power spectral density of the heading data
estimated through (7)-(8) is inherently not white, as the angle
values result from the Kalman filter described in Section IV-B.

In general, H∞ filters stem from game theory and are based
on the optimization of a scalar objective function [16]. In the
case considered, given the operator ‖v‖2M , vTMv (with v
and M being a generic vector and square matrix, respectively),
the objective function is

Jk,

∑k
j=0 ‖Ljsj − Lj ŝj‖2Ij

‖s0−̂s0‖2P̃−1
0

+
∑k
j=0 ‖εΦ,j‖2Ẽ−1

j

+
∑k
j=0 ‖ζj‖2R̃−1

j

, (10)

where matrix

Lj=

{[
I3 03×2

]
if QR is detected[

0 0 1 0 0
]

if QR is not detected (11)

(with I3 being the identity matrix) allows to include in the op-
timization of (10) just the state variables that can be observed
at the jth sampling time. Since the position and orientation
variables are equally relevant for localization purposes, the
elements of Lj corresponding to the observed quantities are
set equal to 1. On the contrary, the three weighting matrices
at the denominator of (10), i.e. P̃−1

0 , Ẽ−1
j , R̃−1

j , offer various
potential degrees of freedom for H∞ filter design, the only
constraint being that they must be symmetric and positive
definite.

For the problem described in this paper, the elements of
P̃−1

0 , Ẽ−1
j , R̃−1

j depend on the experimental uncertainties
associated with the individual elements of vectors s0 − ŝ0,
εΦ,j and ζj , respectively. As far as terms s0−ŝ0 and εΦ,j are
concerned, they can be reasonably regarded as stationary and
normally distributed, since they result from the superimposi-
tion of multiple independent contributions, in accordance with
the central limit theorem. For εΦ,j this is also confirmed by the
experimental results reported in Section VI-B. Thus, P̃0 and
Ẽj can be set equal to the respective covariance matrices P0

and Ej , as customary in Bayesian approaches. In particular,
Ẽj =Ej = diag(σ2

Φr,j
, σ2

Φl,j
), where σ2

Φr,j
and σ2

Φl,j
are the

variances of the independent noise contributions affecting the
right and left wheel encoders, respectively, at time jTs.
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The elements of ζj can be also reasonably assumed as
uncorrelated. However, as shown in Section VI-B, they are
neither Gaussian nor white. In this case, the elements of R̃j
can be simply and reasonably chosen as proportional to those
of the covariance matrix Rj of ζj , i.e.

R̃j=

{
diag{α2

x, α
2
y, α

2
θ} ·Rj if QR is detected

α2
θRj if QR is not detected (12)

where

Rj=

{
diag(σ2

∆x,j , σ
2
∆y,j , σ

2
θ,j) if QR is detected

σ2
θ,j if QR is not detected (13)

with σ2
∆x,j , σ

2
∆y,j and σ2

θ,j being the variances of ζcx,j , ζ
c
y,j and

ζgθ,j respectively. In both cases, the non-negative coefficients
αx, αy and αθ can be found numerically, as explained in
Section VII-B.

It is worth noticing that (4) is nonlinear. So (10) should
be minimized after linearizing the system equations around
the state estimated at time kTs. Unfortunately, the direct
minimization of (10) generally is not a tractable problem [16].
A suboptimal solution can be found by computing the values
of ŝk for which sup{Jk} < γ2

k , where γk is a time-varying
threshold that can be computed adaptively, as explained in
Section V-A. This relaxed problem can be solved by using an
array algorithm [30], such as the technique proposed in [31]. In
this way, the EHF implementation can be split into a prediction
step and an update step, like an EKF. In the case considered,
the prediction step equations based on (4) are:

ŝ+
k+1 = ŝk + f (̂sk)∆̂Φk,

P+
k+1 = FkPkF

T
k +GkẼkG

T
k .

(14)

where ŝk and ŝ+
k+1 denote the estimated and predicted state,

respectively, Pk and P+
k+1 are the corresponding covari-

ances, and Fk and Gk are the Jacobians of the process
dynamic (4) with respect to s and ∆Φ, respectively, computed
at [̂sk, ∆̂Φk]. The equations of the update step instead are [31]

ŝk+1 = ŝ+
k+1 +Kk+1

(
ok+1−h(̂s+

k+1)
)
,

Pk+1 =

(
I5−P+

k+1

[
HT
k+1 LTk+1

]
U−1
k+1

[
Hk+1

Lk+1

])
P+
k+1,

(15)
where Hk+1 is the Jacobian of the output function h(·) in (9)
computed at ŝ+

k+1,

Kk+1 = P+
k+1H

T
k+1

(
Hk+1P

+
k+1H

T
k+1 + R̃k+1

)−1

(16)

with R̃k+1 given by (12), and

Uk+1 =

[
R̃k+1 0

0 −γ2
k+1I

]
+

[
Hk+1

Lk+1

]
P+
k+1

[
HT
k+1 LTk+1

]
.

(17)
Notice that the dimension of the identity matrix I in (17) is
equal to the number of rows of Lk+1.

A. Selection of threshold γk
The computation of parameter γk in (17) deserves special

attention, as it is crucially important for correct EHF operation.
In principle, if γk → +∞, Lk = I5, Ẽk = Ek and

R̃k = Rk, then the EHF coincides with an EKF based on
the same system model. On the contrary, the smaller γk,
the more the EHF achieves optimality in a minimax sense.
Unfortunately, if γk is too strict, matrix Pk in (15) might be
no longer positive definite [32]. As a result, the solution of
the relaxed optimization problem Jk < γ2

k might not exist,
and the estimated trajectories could suddenly diverge. If the
system is always observable, this problem can be addressed by
changing γk adaptively, so that Pk (as well as its inverse) is
positive definite for any k. In particular, by applying the matrix
inversion lemma to (15), the condition of positive definiteness
of P−1

k can be expressed as

P−1
k = P+−1

k +HT
k R̃
−1
k Hk − LTkγ−2

k Lk > 0. (18)

Hence, it is shown in [33] that P−1
k is positive definite for

γ2
k > λ

(
LTkLk(P+−1

k +HT
k R̃
−1
k Hk)−1

)
(19)

where function λ(·) returns the maximum eigenvalue of the
argument matrix. Unfortunately, in the problem at hand, state
variables xk and yk are not always observable, unless a QR
code is detected at every sampling time. Due to this intermit-
tent observability, the estimated trajectory might occasionally
diverge, even if condition (19) holds and even if θk is available.
To avoid divergence when no QR code is detected, γk should
be set strictly larger than (19), even if this choice may lead to
suboptimal results. In particular, it can be easily shown that if

P+−1

k −LTkγ−2
k Lk > 0 and HT

k R̃
−1
k Hk−LTkγ−2

k Lk ≥ 0 (20)

then P−1
k in (18) is certainly positive definite. Thus, when no

QR code is detected, the values of γk result respectively from

γ2
k > λ(LTk LkP

+
k ) and γ2

k ≥ R̃k = α2
θσ

2
θ,k. (21)

Observe that the rightmost expression in (21) results from the
fact that Lk = Hk and, consequently, HT

k Hk(R̃−1
k −γ

−2
k ) ≥ 0.

Ultimately, in order to avoid finite escape time phenomena
while keeping accuracy as high as possible, γk can be com-
puted adaptively by merging conditions (19) and (21) as
follows:

γk=

ξλ
(
LTkLk(P+−1

k +HT
k R̃
−1
k Hk)

)− 1
2

if QR is detected

max{ξλ
(
LTk LkP

+
k

) 1
2 , αθσθ,k} if QR is not detected

(22)
where ξ is an arbitrary constant coefficient to be set slightly
larger than 1.

B. Remarks on the estimation approach

The proposed estimation algorithm relies on a two-step
approach, since the heading measurements based on the fu-
sion of gyroscope data and QR code orientation values (as
explained in Section IV-B) are injected into the update step
of the EHF based on (4). Alternatively, gyroscope and robot
dynamics could be merged into a single state-space model,
which could be eventually used to define a unique integrated
EHF. While this approach looks more efficient, the adopted
two-step solution provides a comparable accuracy with a lower
computational burden. Indeed, if (6) were combined with (4),
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Fig. 2. A snapshot of the FriWalk robotic walking assistant.

not only the state vector, but also the size of all matrices would
increase. Since the order of complexity of an EHF is super-
linear (mainly because of matrix operations), splitting the
estimation problem into two sub-problems is computationally
more efficient. Moreover, since the heading angle should be
estimated in any case from the integral of the angular velocity
values of the enlarged state vector, the EKF based on (7)-(8)
is certainly optimal as the gyroscope measurement noise is
white and Gaussian, as shown in Section VI-B. In conclusion,
opting for a single comprehensive EHF would just increase its
complexity, thus complicating filter design as well.

VI. ROBOTIC PLATFORM AND SETUP

The proposed EHF position estimation algorithm has been
implemented and tested on the FriWalk (see Fig. 2), i.e.
a wheeled robotic walking assistant developed within the
EU project “A CyberphysicAl social NeTwOrk using robot
friends” (ACANTO). The FriWalk is equipped with two inde-
pendent front caster wheels and two fixed coaxial rear wheels.
Under the hypothesis of pure rolling, the fixed wheels impose a
velocity constraint to the robot dynamic, i.e. the device cannot
slide along the rear wheel axle direction. As a consequence,
the vehicle has a nonholonomic constraint and the dynamic
of the point chosen as a reference for localization (namely
the mid-point of the rear wheels axle) can be well described
by a unicycle-like model, like the one used in Section III.
The robot’s wheels radius and the axle length are r = 10
cm and d = 59 cm, respectively. The camera is placed at a
height of about 80 cm and 60 cm ahead of the reference point
along the longitudinal axis of the robot. As a result, lcx = −60
cm and lcy = 0 cm in (4). The main hardware and software
resources of the FriWalk are summarized in Tab. I. The
localization algorithm (except for QR code recognition) runs
on a Beagle Bone White embedded board collecting encoders
and gyroscope data over a Controller Area Network (CAN)
at a rate of 250 Hz (i.e. Ts = 4 ms). The position estimation
algorithm has been implemented in C++ (without any specific
optimization option) by using a Linaro GCC1 5.3 toolchain

1https://releases.linaro.org/

TABLE I
MAIN COMPONENTS OF THE FriWalk WALKING ASSISTANT USED TO TEST

THE LOCALIZATION ALGORITHM.

Item Features

Se
ns

or
s Encoders CUI Inc. AMT10X, accuracy=±15 arcmin at 2048 PPR

Gyroscope 16-bit Invensense IMU-3000, PSD1 =1.74·104 rad/s/
√

Hz
Camera USB PSeye RGB 640×480 webcam

Se
ns

or
da

ta
pr

oc
es

si
ng

Platform Beagle Bone White embedded board
Processor AM335x ARM Cortex-A8 at 720 MHz
Memory 256-MB DDR2 RAM
Storage 8-GB Secure Digital (SD)

OS Ubuntu Linux 14.04 LTS

Im
ag

e
pr

oc
es

si
ng

Platform Intel Nuc mini-PC
Processor Intel I7 5557U at 3.40 GHz
Memory 8-GB DDR3 RAM
Storage 256-GB solid state drive (SSD)

OS Ubuntu Linux 14.04 LTS

1PSD = angular rate noise spectral density.

along with Eigen2 3.2 and ZeroMQ3 4.2 libraries, for linear
algebra operations and communication services, respectively.
QR code detection and recognition (see Section VI-A) are
instead performed by an Intel Nuc mini-PC. This is used
for other tasks as well, such as path planning and collision
avoidance, which are out of the scope of this paper.

A. QR code design, detection and placement

As known, a QR code is a square image containing an
encoded binary matrix, as shown in Fig. 1, which can store
different kinds of data (e.g. numerical, alphanumerical or
bytes). In the case considered, each QR code stores only
an integer number q, which is univocally associated with
the planar coordinates (xq, yq) and the orientation angle θq
of the QR code in the reference frame 〈W 〉 of the chosen
environment. This approach is very flexible, since the table
associating each QR code number to a triple (xq, yq, θq)
can be easily changed and adapted to different environments
with no need to reprint the codes. Also, in this way just
low-density numeric-only codes can be used. All QR codes
were generated by an online tool4 according to the ISO/IEC
Standard 18004:2006 and were printed on regular A4 paper
sheets with a resolution of 600 dpi. As a rule of thumb, QR
code size should be one order of magnitude smaller than the
scanning range. Also, their size should be proportional to a
data density factor given by the ratio between the number of
columns (or rows) of the chosen QR code and the number
of columns (or rows) of a standard version-2 code (i.e. 25).
Resilience to data loss is provided by Reed-Salomon error
correction coding (EEC). Since, in the case considered, the
scanning range of the chosen camera is about 1.2 m, version-
1 type L (i.e. low-level) QR codes with a side of 15 cm
and just 21 × 21 black-and-white cells are used. This choice
provides a good trade-off between detectability (which is never
smaller than about 75% if a QR code lies within the field
of view of the camera) and error recovery capability (up to
7% of corrupted data). In principle, denser QR codes (e.g.

2http://eigen.tuxfamily.org/
3http://zeromq.org/
4http://goqr.me/.
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type H) could provide better error recovery [34]. However,
they would be also harder to detect unless larger landmarks
were used, which would be impractical. QR code detection
and recognition are performed using the open-source libraries
Zbar5 and OpenCV6.

In general, the QR code placement strategy strongly de-
pends on rooms geometry. If no specific constraints exist,
a reasonable approach is to deploy the QR codes over a
regular lattice. In theory, only three periodic, monohedral and
regular tiling patterns can be designed over the plane, i.e.
equilateral triangles, squares or hexagons. Among them, the
square pattern is definitely the easiest to deploy in practice.
Thus, this solution is adopted in the following.

B. Sensor uncertainty evaluation

In this Section, the procedures to evaluate the uncertainty of
FriWalk’s sensors are described and the corresponding results
are reported. This step is essential to justify the use of an EHF.

1) Odometers: The systematic and random uncertainty con-
tributions of odometry-based measurements were evaluated on
the field by driving the robot repeatedly at different constant
velocities (from 0.1 m/s to 2.5 m/s) over a square path.
The statistics of εΦ at different velocities confirm that the
odometers’ uncertainty exhibit a normal distribution. Tab. II
reports the mean and the standard deviation of the odometers’
uncertainty distributions (after one sampling period) as a
function of the angular velocity of each wheel. Results are
basically the same for the right and left wheel, as expected.
However, while the standard deviations do not depend on the
angular velocity (i.e. σΦl≈σΦr =σΦ =2 mrad ∀k), the mean
values ηr and ηl tend to grow linearly with ∆Φr and ∆Φl,
respectively. The goodness of the linear fitting model justifies
the use of state variables µ and δ in (2).

2) Gyroscopic platform: The accuracy of the gyroscopic
platform was evaluated by means of a calibrated orbital rotator
Stuart SB3 in the range [2 − 40] RPM. The data analysis
shows that in all cases the noise patterns exhibit a white
power spectral density and a normal distribution. However,
both the mean value ηω and the standard deviation σω of such
distributions tend to grow linearly with the angular velocity
ω around axis Zw. The expressions of ηω and σω obtained
through a linear fitting are reported in Tab. II. The slope
of ηω is quite large and, to a first approximation, it can
be reasonably assumed to be constant. This result confirms
that the systematic error introduced by the gyroscope can be
successfully modeled by state variable bg in (6). Observe that,
even if the noise distribution is globally normal, the value of
σω is inherently non-stationary due to its dependence on ω.
Therefore, the expression of σ2

ω,k to be used in (7) must be
computed at every sampling time.

3) Vision system: In order to estimate the probability den-
sity functions (PDFs) of uncertainty terms ζcx, ζcy and ζcθ ,
the robot was repeatedly driven towards a target landmark
in different directions and at different speeds till detecting
the QR code. Fig. 3(a)-(c) shows the PDFs of ζcx, ζcy and

5http://zbar.sourceforge.net/
6http://opencv.org/

TABLE II
MEAN AND STANDARD DEVIATIONS OF THE ERRORS INTRODUCED BY THE

ODOMETERS AND BY THE GYROSCOPIC PLATFORM.

Sensor Mean Std. Deviation
Left odometer ηl=0.01∆Φl rad σΦl = 0.002 rad

Right odometer ηr=0.01∆Φr rad σΦr = 0.002 rad
Gyroscope platform ηω=0.15ω rad/s σω=0.07|ω|+0.2 rad/s
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Fig. 3. Estimated probability density functions of camera-based measurement
uncertainties ζcx, ζcy and ζcθ when a QR code is detected and the FriWalk robot
is in motion.

ζcθ estimated using about 100 experimental data. The black
lines correspond to a log-logistic, a triangular and a Gaussian
distribution for ζcx, ζcy and ζcθ , respectively. It is worth noticing
that the latencies to extract the measures from the collected
images are random and can be so large as 150 ms. As a result,
the displayed distributions of ζcx, ζcy and ζcθ are significantly
affected by such latencies. In particular, ζcx, ζcy and ζcθ are
quite uncorrelated when the robot is in motion because the
total position and heading uncertainty depend not only on
the camera, but also on the trajectory of the robot during the



8

TABLE III
MAIN PARAMETERS OF THE EXPERIMENTAL SETUP.

Description Value
Room size (with/without) obstacles ≈ 200/150 m2

Distance D between adjacent QR codes 1, 2, 3 or 4 m
No. paths for every grid of QR codes ≈ 45

Duration of each test [180− 240] s

random time interval in which the information of a QR code
is processed and transferred to the Beagle Bone. This result
confirms that matrix Rj in (12) can be reasonably assumed to
be diagonal. The difference between the distributions of ζcx and
ζcy is mainly due to the adopted setup. Since in the experiments
considered (as well as in typical scenarios) the camera field of
view is maximum in the direction of its optical axis, the impact
of image acquisition and processing latencies is much larger
on ∆xc than on ∆yc. Also, ∆xc is overestimated because
the robot mainly moves forwards. As a result, the distribution
of ζcx is skewed with a mean value of about 12 cm, whereas
ζcy exhibits a zero mean because the probabilities of detecting
a QR code located on the right or on the left of the optical
axis are approximately the same. Similarly, the mean value
of ζcθ is zero, as the robot can be reasonably assumed to turn
left and right with equal probability. Therefore, just the mean
value of ∆xc has to be properly compensated (i.e. subtracted
from ∆̂x

c
) prior to injecting the measured data into the EHF.

Quite importantly, the fact that both ζcx and ζcy are not normally
distributed confirms the idea of using an EHF. On the contrary,
the seeming Gaussianity of ζcθ justifies the use of the EKF
based on (7)-(8) for heading estimation.

4) Position and heading measurement uncertainty: The
overall measurement uncertainty vector ζ = [ζx, ζy, ζθ]

T in (9)
deserves some further explanation. The distributions of ζx and
ζy coincide with those of ζcx and ζcy , respectively. So they can
be assumed to be stationary (i.e. independent of k). On the
contrary, the distribution of ζθ is strongly time-varying, as it
results from (8). In addition, the distribution of ζθ depends on
QR code density. As a result, the power spectral density of ζθ
is definitely not white and it is more similar to a random walk
process. However, this is not an issue if an EHF is used.

VII. EXPERIMENTAL RESULTS

To test the behavior of the EHF and to perform a realistic
comparison with other position estimation algorithms, the
FriWalk prototype was driven along multiple random paths in
the premises of the University of Trento. The main parameters
of the chosen experimental setup are listed in Tab. III. The
position of the FriWalk along every path (i.e. the “ground
truth”) was reconstructed by using a Sick S300 Expert Laser
scanner. The accuracy of this instrument (i.e. 30 mm and 0.5
degrees in polar coordinates for objects up to 30 m far) is
indeed much higher than the accuracy achievable with the
sensors installed on the robot.

A. EHF parameters settings

As known, the parameter values of an EHF have to be cho-
sen on the basis of the specific problem. In the case considered,
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Fig. 4. 99th percentiles of the Euclidean position error as a function of ratio
αθ/αp. Each curve is obtained with a different value of αθ .

Ẽk = Ek = diag(4 · 10−6 rad2, 4 · 10−6 rad2) in accordance
with the results reported in Section VI-B. The elements of
P̃0 = P0 can be set very large (e.g. from one to two orders
of magnitude larger than the expected values), since no a-
priori information is usually available on the robot’s state. The
value of parameter γk in (17) results from (22), as described
in Section V-A. Finally, the elements of R̃k are given by (12),
with Rk = diag(1.6 · 10−3 m2, 4.9 · 10−5 m2, σ2

θ,k rad2) or
Rk = σ2

θ,k rad2, depending on whether a QR code is detected
or not, in accordance with the results shown in Fig. 3. It is
worth reminding that σ2

θ,k is the variance of the heading angle
measured as explained in IV-B, therefore it changes over time.
Unfortunately, the problem of finding the best values of αx, αy
and αθ coefficients in (12) is intractable analytically. So it was
addressed through simulations based on experimental data. To
this end, the EHF was repeatedly applied off-line to the same
set of raw sensor data collected by the FriWalk, for different
values of αx, αy and αθ. From the comparison between the
estimated results and those obtained with the laser scanner, it
was observed empirically that:

1) The best results are obtained when αx ≈ αy . Thus, a
single common coefficient (called αp in the following)
can replace both αx and αy in (12).

2) Two suboptimal values of coefficients αp and αθ can be
derived heuristically by finding the pair which minimizes
the 99th percentile of the Euclidean distance between
actual and estimated positions.

The choice of using the 99th percentile of the position error
as a performance index is dictated by the fact that the EHF
is optimal in a minimax sense. So the EHF parameters should
be chosen to minimize the worst-case errors, while filtering
possible outliers that could make the estimated maxima ex-
cessively noisy. Fig. 4 shows the 99th percentile curves for
different values of αp and αθ when D = 2 m. The results
obtained with a different QR code density exhibit a similar
trend and are not reported for the sake of brevity.

To highlight the most accurate configuration, the 99th
percentiles of the position errors are plotted as a function of the
ratio αθ/αp for several values of αθ. The minima of the curves
in Fig. 4 do not change significantly for αθ ≥ 100. Thus, EHF
accuracy is optimal for αθ ≈ 100 and αp = αθ/101.25 ≈ 5.6.
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Fig. 5. A sample path in a real-world scenario.
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Fig. 6. Estimation errors of state variables x, y and θ obtained when the
EHF (solid lines) and the PF (dashed lines) are used to track the position of
the FriWalk along the path depicted in Fig. 5.

B. Performance analysis and comparison

This Section reports a performance analysis as well as
a comparison between the proposed EHF (with the optimal
settings computed as described in Section VII-A) and an EKF,
a UKF and a PF based on the very same models described
in Sections III and IV. EKF, UKF and PF rely on state-
of-the-art approaches as described in [29], [35] and [15],
respectively. In the PF case, a Sequential Importance Re-
sampling (SIR) technique is used. Particles are taken from
a normal distribution with a standard deviation about 10 times
larger than the actual value to avoid the sample depletion
problem [15]. In particular, 1000 particles are generated at
every time. This number of particles ensures indeed good
accuracy, while keeping the computational burden reasonable,
although real-time performance can be hardly guaranteed with
the chosen processing platform, as it will be shown later.

A first performance comparison in a real-world scenario is
shown in Figs. 5-6. In the map shown in Fig. 5, the distance
D between adjacent QR codes is 2 m, as this choice provides
a reasonable trade-off between performances and deployment
complexity. In the case considered, EHF and PF are globally

more accurate than EKF and UKF. So, only the trajectories
estimated by EHF and PF are plotted in Figs. 5-6, not to
overcrowd the picture. The corresponding estimation errors of
state variables x, y and θ (solid lines for EHF and dashed
lines for PF) are shown in Fig. 6 as a function of time.
Clearly, the maximum EHF estimation errors along axes x and
y are smaller than those obtained with the PF (i.e. ±50 cm),
while the angular errors are generally within ±0.1 rad in all
cases. This behavior is due to the intermittent observability of
system (4), which in turn depends on the random availability
of QR code measures at a given sampling time. In fact, this
depends not only on the field of view of the camera, but also
on QR code density and on the robot’s actual path. Some
Monte Carlo simulations have shown that the average length
of the path between two detected landmarks tends to grow
quadratically with D, while the worst-case values range from
about 10 m for D = 1 m to about 80 m for D = 4 m. This
happens, for instance, in the central part of the path shown in
Fig. 5 and explains why the estimation error (which depends
solely on dead reckoning in this part) tends to grow. Of
course, such intermittent observability also affects convergence
and explains why the results reported in this paper are quite
different from those of other QR-based localization solutions
where at least one landmark is always in view [25]. Despite
this difference, convergence is always guaranteed if the robot
moves randomly over an area evenly covered by landmarks, as
a QR is certainly detected after a finite time and, consequently,
position estimation uncertainty is kept bounded. This behavior
can be hardly described analytically, but it holds regardless of
the chosen position estimation algorithm, although accuracy
may differ considerably. In this respect, the proposed EHF is
expected to perform better than the other estimators because
it is designed to be optimal in a minimax sense.

A more detailed and complete accuracy comparison between
EHF, EKF, UKF and PF is shown in Tab. IV. This table reports
the root mean square (RMS) values and the 99th percentiles
of the estimation errors of state variables x, y and θ computed
over more than 40 random paths when different grids of QR
codes are used (i.e. with D equal to 1, 2, 3 or 4 m). Both the
RMS and 99th percentile estimation errors are computed after
the first QR code is detected. This event occurs at a random
time, ranging from 2-3 s when D = 1 m, up to about 1 minute
when D = 4 m. As a result, the average number of distinct QR
codes that are detected over a one-meter path ranges between
0.07 for D = 4 m and 0.7 for D = 1 m.

From Tab. IV it can be clearly recognized that the EHF
outperforms both the EKF and the UKF. Also, the EHF
is slightly more accurate than the PF with 1000 particles,
especially in the worst case. Observe that when D = 1 m the
accuracy of all algorithms becomes comparable. This is due
to the fact that in this case localization accuracy is dominated
by the performance of the vision system. However, the most
interesting results are those obtained when D is larger, i.e.
when the landmark density is low. It is worth emphasizing
that if state variables µ and δ were not included in the state
vector model of (1), the estimation uncertainty of variables x, y
and θ would be larger in all conditions, because the systematic
offsets introduced by the odometers could not be estimated and
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TABLE IV
RMS AND 99TH PERCENTILES OF THE x, y AND θ ESTIMATION ERRORS OBTAINED WITH VARIOUS ALGORITHMS USING SQUARE-PATTERNED GRIDS OF

QR CODES WITH A DIFFERENT GRANULARITY.

D = 1 m D = 2 m D = 3 m D = 4 m
EHF EKF UKF PF EHF EKF UKF PF EHF EKF UKF PF EHF EKF UKF PF

x
RMSE [cm] 10 15 10 10 15 25 25 20 20 35 35 30 25 40 40 35

99th Perc. [cm] 35 50 45 40 50 105 100 90 60 130 125 95 75 140 135 110

y
RMSE [cm] 10 15 10 10 15 30 25 20 20 40 35 30 20 45 40 35

99th Perc. [cm] 35 55 45 40 45 100 95 85 55 130 120 100 70 150 140 120

θ
RMSE [crad] 5 10 10 5 5 10 10 10 10 15 15 10 10 15 15 10

99th Perc. [crad] 20 30 30 25 25 40 40 30 30 40 40 35 30 45 45 40

TABLE V
CONVERGENCE TIME AND COMPUTATION TIME OF THE EHF, THE EKF,

THE UKF AND THE PF WHEN D = 1 M.

EHF EKF UKF PF
Convergence time [s] 18 9 2 11

Computation time (no QR code update) [ms] 0.09 0.06 0.25 0.80
Computation time (with QR code update) [ms] 0.26 0.16 0.60 6.69

compensated. In particular, the RMS estimation errors would
increase by a variable amount (i.e. from about 2% to about
20%), depending on both the specific estimation algorithm and
the QR code density adopted.

Tab. V reports the mean convergence time and the mean
computation time (with and without using QR code data in
the update step) of all estimation algorithms when D = 1 m,
i.e. when accuracy is maximum. In particular, the convergence
time of a single experiment is estimated by computing the
average time intervals after which the estimation uncertainties
of state variables (x, y, θ) become smaller than the respective
99th percentile reported in Tab. IV. The results in Tab. V show
that the EHF exhibits the slowest convergence. However, in
terms of average computation time, the EHF is just slightly
slower than the EKF, but it is much faster than both the UKF
and the PF, especially when a QR code is used to update the
state of the system. Moreover, with the adopted processing
platform, the EKF and the EHF can always return a result in
real-time (i.e. within Ts = 4 ms), whereas the UKF and, above
all, the PF may occasionally miss the deadline. This is evident
especially in the PF case, since its average computation time
is always larger than 4 ms when a QR code is detected.

VIII. CONCLUSION

In this paper an Extended H∞ filter (EHF) for indoor
localization of unicycle-like robots is described, optimized,
implemented and finally characterized. The proposed approach
relies on: i) odometry and gyroscope data which ensure con-
tinuous position tracking; ii) QR code recognition to observe
and to adjust robot’s position and heading; iii) an adaptive
mechanism to avoid EHF finite escape time phenomena. An
extensive experimental campaign as well as a performance
comparison with alternative estimators based on the same
system model (i.e. a classic EKF, an UKF and a PF) show
that the proposed EHF can provide very good performances
with a reasonable computational burden. Indeed, even if the
EHF converges more slowly than the others, its accuracy is
higher. Also, the EHF computation time is a bit higher than the
EKF, but it is lower than both the UKF and the PF. This result

is due to the intrinsic nature of the EHF, which is explicitly
conceived to minimize the maximum estimation error even
if the measurement uncertainty contributions are completely
unknown. While estimation accuracy is currently limited by
the low-cost sensors of the adopted robotic platform, the
proposed approach is general enough to be applied to more
sophisticated robots as well.
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