
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Tice: a Real-Time Language Compilable Using C++ Compilers

Tadeus Prastowo1 | Luigi Palopoli*1 | Luca Abeni2

1DISI, University of Trento, Trento, Italy
2Scuola Superiore S. Anna, Pisa, Italy

Correspondence
*Luigi Palopoli (Povo-2, Room 130), Via
Sommarive, 9 Trento, 38123 Italy. Email:
luigi.palopoli@unitn.it

Abstract

Model-based development (MBD) holds the promise to capture potential timing
problems in embedded software during the early phases of the development, secur-
ing the production of bug-free embedded software. For most MBD approaches,
the source code is just an intermediate artifact that can be generated automatically
from the models. This assumption clashes with an undeniable fact: a large share of
the commercial embedded software exploits existing libraries or is developed using
C/C++ natively.
A way to reconcile the ambitions of MBD with the use of a programming language
is by offering new language constructs and an innovative compilation tool-chain that
prevents model error and timing problems “by construction.” However, the persis-
tent popularity of C/C++ among embedded programmers and the limited availability
of tools have severely limited the uptake of alternative programming languages for
embedded software.
Therefore, we propose an original route. Our language proposal, named Tice, has
been shaped as a C++ active library. Tice retains full compatibility with existing C++

code, which can be integrated easily into new Tice-based projects. The enforcement
of Tice syntax and semantics can be made by a standard C++ compiler, forgoing the
need for new tools. In this paper, we describe Tice’s syntax, semantics, and model of
computation and communication. We demonstrate Tice’s practical applicability on
an industrial scale use-case and give ample evidence for Tice’s efficient compilation
using off-the-shelf C++ compilers. Lastly, we show Tice’s code generation process.

KEYWORDS:
real-time programming language, logical execution time (LET), template meta-programming (TMP),
C++ active library, C++ EDSL (embedded domain-specific language), embedded software engineering

1 INTRODUCTION

Embedded software is the main stay of modern information and communication technology industry: it lies at the heart of a
whole lot of innovative applications, such as automated driving, robotics, and Internet of Things. The very peculiar nature of
embedded software adds much to the complexity of its development. A very important paradigm of these complexities is the
enforcement of a correct real-time behavior in the face of strong constraints on the cost of the hardware. For many embedded
systems, uncontrolled delays or timing errors can result in a malfunctioning system that can cause substantial material losses.
Such problems can be very hard to track down during the programming phase because they can be the result of unfortunate input

2 PRASTOWO ET AL.

and workload patterns, which are very difficult to anticipate and replicate. When a timing violation materializes in a late stage
of the development or, even worse, after the system delivery, it can be extremely expensive to repair.

1.1 Landscape
Model-based development (MBD)1 is a methodology first proposed a couple of decades ago and has gained traction in some
crucial applications in the embedded systems landscape, such as the automotive industry. In an MBD cycle, a system is modeled
as a set of communicating blocks, each one associated with a mathematical transformation. Blocks are concurrent entities whose
communication has formally specified semantics. The path to the implementation of themodel consists of a number of refinement
steps, in which the model becomes increasingly detailed (i.e., less abstract) until it finally takes the form of executable code. The
key requirement of MBD is that a number of relevant properties are preserved across each refinement step so that the correctness
of the system is eventually guaranteed by construction. In this framework, the source code expressed in high-level programming
languages is no different from any intermediate format and is, by and large, automatically generated from the models.2 This
philosophy needs to come to terms with an undeniable reality: most embedded software developers still prefer direct coding in a
programming language for developing embedded software or at least need the freedom to reuse libraries and code from previous
projects. More often than not, the source code is not for them an intermediate format but a native way for expressing the system
design. In this setting, the only way to follow an MBD cycle faithfully is for the models to percolate down into the programming
language to become language constructs and for the compilation tool-chain to become capable of verifying and enforcing the
properties of the models.
While real-time language research has proposed many real-time languages over several decades, which we will report about

in Section 7, none of them has been widely adopted by embedded developers. In contrast, C++ has maintained a dominant posi-
tion, being the standard choice to program embedded systems,3,4,5,6 including high-profile projects such as Mars rovers,7 F-35
jet fighters,8 and the Robot Operating System.9 While Python3,9 and Java10 have gradually conquered important niches (espe-
cially in data processing and human-machine interfaces), they are not considered as a realistic choice for system programming.
Therefore, even the embedded software that is nominally developed in Python/Java ends up relying on C/C++ components and
libraries for low-level control of the devices, not to mention that C/C++ also serves as the basis for implementing the Python
interpreters and the Java virtual machines themselves. Lastly, Ada10 is still used in a relatively small niche of safety-critical sys-
tems requiring certification, but we could easily argue that the presence of Ada programs in a lot of embedded systems produced
every year has become marginal as demonstrated by the adoption of C++ in the F-35 jet fighters project.8
Since C++ is not a programming language originally thought for real-time programming, embedded software engineering still

deals with the real-time aspect of embedded software on an ad hoc basis, quoting one of the founders of the Robot Operating
System, “any real-time requirements would be met in a special-purpose manner.”11 In other words, the respect of the real-time
constraints could emerge from the application of “self-discipline” or an appropriate methodology without being exposed in the
programs. In particular, the adoption of C++ in the aforementioned high-profile projects shows that practical methodologies exist
to deal with the aspects of the C++ language that are considered unsuitable for use in the real-time context, such as exception
handling, dynamic memory allocation/deallocation, and the use of virtual functions in the C++ standard library whose instruc-
tions, virtual tables, and data may be stored in different locations resulting in non-deterministic cache usage patterns. However,
the recent accident involving a Tesla car suggests that even a single accident in the face of thousands of hours of flawless oper-
ations could undermine people’s trust in a new technology,12 while a reckless adoption of design short-cuts, solely dominated
by economic concerns, could lead to catastrophic outcomes.13 The difference between high and low quality software is often a
few lines of code, which can be the consequence of “seemingly inconsequential choices”. The good choices are those based on
“codified scientific knowledge rather than on the intuition and on the experience of the programmer”.14 Programming discipline
and the adoption of guidelines such as MISRA C/MISRA C++15,16 can be helpful but do not solve the problem. On the contrary,
a well-designed set of language primitives can be a game changer inasmuch as we capitalize on the lessons learned from the
unsuccessful (or partially successful) attempts of the past. We believe we can condense such lessons in three paragraphs.

1.2 Expected Features
First, an embedded real-time application has a functional aspect and an architectural aspect. At the functional level, we can see
the application as a network of functional blocks (runnables in the AUTOSAR terminology) that interact according to well-
defined semantics (often called model of computation and communication). At the architectural level, the different blocks are

PRASTOWO ET AL. 3

mapped into a set of container tasks, which in turn are associated with their scheduling parameters and, possibly, allocated to
different processor cores. Timing constraints are associated with the functional model, but their enforcement heavily depends
on the architectural choices. This being said, a language for real-time applications should enable the developer to design the
functional model, to decorate the model with timing constraints, to define the mapping of the functional model into some
architectural model (or to synthesize the mapping itself), and to propagate the execution constraints to the architectural entities
while securing their enforcement.
Second, the language should allow the developers to easily integrate their existing codebases into their new projects. These

codebases are in large part composed of legacy C/C++ code and libraries. More generally, embedded software developers’
fondness for C/C++ is rooted in a number of objective reasons: “easy access to hardware, lowmemory requirements, and efficient
run-time performance being foremost among them.”17 Additionally, themastery of the known limitations of the C/C++ language,
such as the absence of some run-time checks, the error-prone syntax, and the undefined and implementation-defined areas,
is believed to require very experienced programmers. Therefore, adopting a new language should not entail the programmers
abandoning their existing programming tools (compilers and possibly also editors, debuggers, and program analyzers) if not
also their mastery of the C/C++ language. Nevertheless, many of the programmers have been exposed to the novelty of MBD;
within many of their projects, they have to integrate significant parts that have been developed using modeling tools (e.g.,
MATLAB/SIMULINK) by exploiting their code-generation ability. While the use of such modeling tools gives a sounder basis for
engineering the control performance of embedded software, it stops short of providing a sounder basis for the integration of the
generated C source programs. The integration with external C/C++ programs, often manual or semi-manual, is an error-prone
procedure that can easily invalidate the properties of the model-based code. For this reason, we believe that the advantages of a
small set of model-based primitives built on top of their favorite languages could make the novelty palatable even to the most
traditionalist and performance-obsessed embedded developers.
Third, in order to make any proposal acceptable, it has to come along with a set of efficient and up-to-date compilation tools

able to capture all the inconsistencies of the project and to report them with clear and usable error messages. More importantly,
the build process should not be burdened by very long compilation times, which the programmer could find difficult to accept
for the frequency of the builds.

1.3 Contributions
In order to meet the challenging requirements, we have developed a novel real-time programming language called Tice with the
main objective of seamlessly integrating within an MBD cycle the system’s real-time model and existing C/C++ components
and libraries. To achieve the main objective, Tice has been developed with a number of important features:

1. Tice is shaped as an active C++ library; it therefore retains full compatibility with the use of a C/C++ codebase.

2. Tice allows the programmer to define the application as a DAG (directed acyclic graph) of functional blocks and to specify
their mapping to architectural entities (concurrent tasks). The programmer can define different types of timing constraints
along the different paths taken by the data through the DAG. The adoption of time-triggered LET (logical execution time),
which is introduced in the real-time language Giotto,18 as the model of computation and communication allows us to
decouple the timing analysis of the functional behavior from the enforcement of the constraints that make the architectural
mapping respect the assumptions of the LET model.

3. Tice is implemented using the technique known as template meta-programming (TMP). Therefore, the syntax and the
semantic checks are made directly by the C++ compiler compliant with the C++ standard. What is more, the use of TMP
can be combined with other compile-time checks on the data types (e.g., it is possible to associate each piece of data with
its measurement unit and demand that the unit stays consistent between the producer and consumer of the data).

4. Tice as much as possible uses TMP data structures with constant access time. Therefore, the compilation process is
extremely efficient.

5. Tice reports a comprehensible errormessagewhen the compilation fails (the copious and incomprehensible errormessages
are a known problem incurred by the advanced use of templates in C++) as shown in Figure 10, Figure 11, and Figure 12.

6. Tice generates executables that as much as possible use no techniques (e.g., loop unrolling) and C++ features (e.g., excep-
tion) that are considered unsuitable for use in the real-time context. And, if the resulting executables are still deemed to

4 PRASTOWO ET AL.

System real-time model
expressed using Tice API

as a system C++ component

System C/C++ component

C++ compiler, which now is
usable as model-based tool

Design questions

Tool computes answers
(e.g., by simulation)

Revise
model

?
Yes

No

Executable
Tice MBD workflow

System real-time model System C/C++ component

C++ compiler

Model-based tool
(e.g., MATLAB/Simulink)

Design questions

Tool computes answers
(e.g., by simulation)

Revise
model

?

Yes

No

Model implementation in C

Executable
Traditional MBD workflow

FIGURE 1 The difference between the traditional and Tice MBD workflows.

be using unsuitable techniques and C++ features (or deemed to be missing some techniques and C++ features), Tice can
be extended easily to generate executables without undesirable and with desirable techniques and features as explained in
Section 6.3.

7. Tice requires none of its users to have any knowledge of TMP. The users of Tice are only required to be capable of using
an ordinary C++ library whose application programming interface (API) enables the construction of an object whose type
expresses some system’s real-time model that will be implemented by the constructed object. We refer to the expression
of such an object in a C++ program as a Tice program.

Tice therefore enables a new seamlessly integrated workflow within an MBD cycle as shown in Figure 1. Specifically, while
the system real-time model and C/C++ components in the traditional MBD workflow are not integrated seamlessly because the
separate model-based tool cannot see the C/C++ components, the system real-time model and C/C++ components are seamlessly
integrated in the Tice MBD workflow because the model-based tool is none other than the C++ compiler itself.
In this paper, we make four main contributions:

1. In Section 2, we first explain why Tice is capable of seamlessly integrating a system’s real-time model with the system’s
C/C++ components by making the real-time model compilable using off-the-shelf C++ compilers. Then, in Section 3
we define Tice syntax and semantics to show the kind of real-time models that are expressible in Tice. Note that Tice’s
main novelty is not the kind of real-time models that are expressible in Tice because we synthesized Tice from existing
real-time languages as explained in Section 7; in contrast to other real-time languages that follow the traditional MBD
workflow shown in Figure 1, Tice’s main novelty is its capability to seamlessly integrate a system’s real-time model with
the system’s C/C++ components to enable the novel Tice MBD workflow shown in Figure 1.

2. In Section 4, we first present an engineering case study called ROSACE (Research Open-Source Avionics and Control
Engineering).19 As the case study calls for the development of embedded software, we then program the embedded
software in C++with the software’s real-time aspect being programmed in Tice in Section 4.1. Therefore, we demonstrate
Tice’s prowess as a real-time language that is not only integrable seamlessly with other C/C++ software components but
also compilable using off-the-shelf C++ compilers.

3. In Section 4.2, we use the ROSACE case study to demonstrate the possibility to use Tice and an off-the-shelf C++ compiler
as a modeling tool, much like MATLAB/SIMULINK. Furthermore, we show in Section 5 that the possibility is practically
feasible by showing the times that popular off-the-shelf C++ compilers, namely GCC and Clang, took to analyze (i.e.,
compile) some Tice models that approximate cases represented by the ROSACE case study. While other off-the-shelf

PRASTOWO ET AL. 5

C++ compilers exist, GCC and Clang are representative of the others to show the practical feasibility of the proposed Tice
MBDworkflow because GCC and Clang embody the state of the art in the compilation of standard C++ programs20,21 and
GCC especially has a large user base in embedded software development,22,23,24 including the high-profile Mars rovers
project.7 Therefore, we show that Tice and an off-the-shelf C++ compiler are altogether usable as a modeling tool that
can integrate its generated programs automatically with the other C/C++ software components that make up the complete
embedded software.

4. In Section 6, we show how the C++ active library that implements Tice generates code that implements the compiled
Tice model. In particular, we show that the library is easily extensible to generate code for various different architecture
in Section 6.3.

Lastly, we give the rationale that we use to define the language of Tice and its semantics in Section 7, in which we also outline
related work, and draw our conclusions in Section 8, in which we also outline some possible future work.

2 C++ ACTIVE LIBRARY AND ITS USE OF TEMPLATES IN EMBEDDED SOFTWARE

Tice is capable of seamlessly integrating a system’s real-time model with the system’s C/C++ components because the real-time
model is expressed in Tice and Tice compilers are none other than off-the-shelf C++ compilers. Specifically, the constructs of the
Tice language are none other than the API of a C++ library called Tice library. Tice library, however, would not implement the
language of Tice were it not capable of analyzing Tice programs expressed using the library API at compile time. Consequently,
Tice library has been programmed as a collection of template metaprograms, which will direct off-the-shelf C++ compilers to
perform the needed analyses at compile time. Having been programmed as a collection of template metaprograms, Tice library
is called as a C++ active library, and the implemented language is called as being embedded in C++.25,26 Tice therefore is a C++

embedded domain-specific language whose embedding is done through TMP (template metaprogramming). While TMP was
not designed into C++27 but discovered by Erwin Unruh in 1994,28 C++ has evolved to support TMP better. This is because one
of the C++ design goals is to provide good support for library development that in turn will provide good support for application
development.6,28

2.1 C++ Active Library — Ordinary C++ Library for Its Users but Active for Its Engineers
Figure 2 shows the building blocks (i.e., the constructs) of TMP. The left part of Figure 2 shows a mathematical function that is
implemented as a template metaprogram shown on the right part of Figure 2. As shown on the left part, the factorial function
is defined only for n between 0 and 12, inclusive. Consequently, the template metaprogram must check at compile time that
it is indeed the case. As shown on the right part, the main building block of TMP is a class template (lines 1–2).29 The class
template can be specialized to handle different cases (lines 4–5 specialize the class template for n = 0, defining it in lines 6–7),
which is analogous to the conditional construct in an imperative language, and the class template’s definition can instantiate
itself (lines 9–13 define the class template by instantiating itself in line 12), which is analogous to the repetition construct in
an imperative language. At this point, it is easy to see that the building block is a Turing-complete programming construct.29
Another important building block, which did not exist back in 1994, is a static assertion to ensure that some property holds at
compile time. For example, line 11 ensures that the template metaprogram will raise a compile-time error if it is used to compute
some undefined value at compile time.
To show how the template metaprogram fact shown in Figure 2 works at compile time, we will consider the compilation of

file fact.cppwhose content is the right part of Figure 2 that is appended with “int main() {return fact<5>::value;}”.
The compilation will produce an executable that upon execution terminates with an exit code of 120— the value of 5! com-
puted by the template metaprogram fact. The computation of 5! to produce the value 120, however, happens not when the
executable is executed but at compile time when the executable is being produced by a C++ compiler. Specifically, when the
C++ compiler processes the expression fact<5>::value, the compiler looks for the template definition of fact and finds two
candidates, the specialized definition for n = 0 and the non-specialized definition for any other value of n. Since fact<5>
matches the non-specialized definition, the compiler processes the definition shown in Figure 2 lines 9–13 by first checking
that n ≤ 12, which indeed is the case and therefore raises no compile-time error, and then continues by evaluating the value of
class data member value. During the evaluation, the compiler encounters the need to evaluate fact<4>::value and therefore

6 PRASTOWO ET AL.

template<unsigned n>
struct fact;

template<>
struct fact<0> {
 static constexpr unsigned value = 1;
};

template<unsigned n>
struct fact {
 static_assert(n <= 12, "Arg 1 (n) is out of range");
 static constexpr unsigned value = n * fact<n - 1>::value;
};

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

fact : {n ∈ ℕ ∣ n ≤ 12} → ℕ

1 , if n = 0

n fact(n− 1) , otherwise

fact(n) =

⎧⎪⎪
⎨⎪⎪⎩

FIGURE 2 Implementing a factorial function (left) as a C++ template metaprogram (right).

$ g++-9 -S -fno-dwarf2-cfi-asm -o - fact.cpp
 .file "fact.cpp"
 .text
 .globl main
 .type main, @function

1
2
3
4
5

 movl $120, %eax
 popq %rbp
.LCFI2:
 ret
.LFE0:

11
12
13
14
15

main:
.LFB0:
 pushq %rbp
.LCFI0:
 movq %rsp, %rbp

 6
 7
 8
 9
10

FIGURE 3 Compilation of Figure 2 (right) appended with “int main() {return fact<5>::value;}” (fact.cpp).

repeats the look-up process all over again, successively encountering the needs to evaluate fact<3>::value, fact<2>::value,
fact<1>::value, and eventually fact<0>::value. Upon encountering the need to evaluate fact<0>::value, the compiler
finds that it matches the specialized definition for n = 0 shown in Figure 2 in lines 4–7 and processes it accordingly, evaluating
fact<0>::value to 1. The compiler then recursively backs up to evaluate fact<1>::value to 1, fact<2>::value to 2, and
so on, eventually evaluating fact<5>::value to 120. At that point, the statement “return fact<5>::value;” is compiled
into the intermediate representation of the statement “return 120;” that eventually is compiled into the assembly instruction
shown in Figure 3 lines 11–14. As a result, the executable that is obtained from the assembly instructions by an assembler will
not compute 5! at runtime but simply return the value 120 already computed at compile time. It is important to understand that
the expression fact<5>::value is not optimized by the compiler itself because the compilation command shown in Figure 3
line 1 requests no optimization to be performed (i.e., the compilation command specifies no optimization option, such as -O2).

2.2 Executable Size and Debugging Concerns over Templates Used by a C++ Active Library
The use of class templates in TMP does not imply code bloat, which is the usual reason to ban the use of templates in C++

embedded software.7 The compilation’s assembly listing shown in Figure 3 shows that instead of the code bloat that results from
the template instantiations fact<5>, fact<4>, . . . , and fact<0>, the template metaprogram fact optimizes the expression
fact<5>::value by directing the C++ compiler to compute its final value and incorporate only the final value (120) in the
resulting code in line 11 of Figure 3. In the same way, the C++ active library that implements Tice generates code only as needed,
resulting in no code bloat despite the library API being a set of C++ templates. Consequently, the usual reason to ban the use of
C++ templates in embedded software development should not hinder the wide-spread adoption of Tice as a real-time language.
The use of class templates in TMP also does not imply executables that are harder to debug owing to their having C++ objects

whose types have very long names obtained by recursive template instantiations. As shown in Figure 3, despite the recursive
instantiations of template fact explained in the previous section, the assembly listing shows no object with a long type name
other than the single typeless value 120 in line 11. Furthermore, even if the use of class templates in TMP indeed results in
executables whose C++ objects have very long type names, strategies exist in many cases to shorten the object names, for
example, by not triggering the C++ one-definition rule (ODR), not to mention that C++ debugging tools themselves may already
have means to deal with long type names.
Indeed, the use of C++ templates in embedded software is usually encouraged.5,8,16 First of all, the judicious use of templates

guarantees data consistency and integrity, such as ensuring data consistency and integrity across different C++ functions when
the data have physical units of measurement. Secondly, the judicious use of templates lowers runtime overhead by performing
domain-specific optimization as exemplified in Figure 3, which in turn lowers energy consumption. These two well-known
reasons for using templates in embedded software when coupled with the fact that templates are Turing-complete programming

PRASTOWO ET AL. 7

construct allow us to perform even greater variety of static analyses and domain-specific optimization as embodied in the C++

active library that implements Tice.

3 A REAL-TIME LANGUAGE EMBEDDED IN C++

Since Section 2 has explained why and how Tice is capable of seamlessly integrating a system’s real-time model with the
system’s C/C++ components as well as addressing the usual concern about using C++ templates in embedded software, we will
now show the kind of real-time models that are expressible in Tice by describing its syntax and semantics.

3.1 The Syntax of Tice
The syntax of Tice is none other than the C++ syntax to use the following API members of Tice library, which are enclosed
within the C++ namespace tice::v1:30

• Template Ratio. This template is used to express a rational number p∕q, and therefore, takes two integer parameters p
and q. The second parameter can be omitted, in which case it defaults to one. For example, the integer 1 is expressed as
Ratio<1>, while the rational number 1∕1000 is expressed as Ratio<1,1000>. Note that C++ has various safer ways to
specify a rational number with a large denominator, for example, 1 �s can be expressed in seconds as Ratio<1,1000000>
or in a safer way as Ratio_us(1) by defining the appropriate macro or as 1_us by defining the appropriate user-defined
literal. In this paper, however, the safer ways are not used to show the canonical syntax of Tice.

• Template Core_ids. This template is used to express a set of processor IDs that can be used to execute the set of real-
time tasks that Tice library will generate at compile time. Consequently, this template takes a sequence of integers, which
can be empty. For example, Core_ids<0,2> expresses the fact that the set of real-time tasks must execute on processor
cores whose IDs are 0 and 2, while Core_ids<> expresses the fact that no real-time tasks shall be generated. If an empty
sequence is specified, Tice library will not generate any real-time task but will still analyze the expressed Tice program,
which is useful to turn an off-the-shelf C++ compiler into a modeling tool as shown in Section 4.2.

• Template HW. This template is used to express the target hardware for which Tice library shall generate the real-time exe-
cutable. Currently, this template takes Core_ids as its sole parameter because Tice library currently generates real-time
executables only for hardware with a homogeneous multicore architecture. For example, HW<Core_ids<0,2>> expresses
target hardware with at least two processor cores, while HW<Core_ids<>> expresses the special target hardware for which
Tice library generates no code, which is useful when using an off-the-shelf C++ compiler as a modeling tool as shown in
Section 4.2. It is not hard to see, however, that in the future, more parameters could be supplied so that Tice library could
generate real-time executables also for other hardware architectures (e.g., heterogeneous processors).

• Macro Comp and template comp::Unit. The macro Comp expands to template comp::Unit to express the WCET (worst-
case execution time) of a C++ function. This macro therefore takes two parameters, the first one being the identifier of the
C++ function that is prefixed with & (the address-of operator) and the second one being theWCET expressed using Ratio.
For example, the assignment of a WCET of 250 �s to the C/C++ function fn is expressed as Comp(&fn, Ratio<250,
1000000>). It is, however, useful to use comp::Unit directly to resolve the ambiguity that results from taking the address
of an overloaded function. In this case, while the second parameter of comp::Unit is also the second parameter of Comp,
the first parameter of comp::Unit is template Value, which takes two parameters. While the second parameter of Value
is also the first parameter of Comp, to resolve the ambiguity, the type of the pointer to the desired overloaded function is
specified as the first parameter of Value. For example, if fno identifies two overloaded C++ functions whose prototypes
are “float fno(float)” and “double fno(double)”, respectively, then the assignment of a WCET of 250 �s to the
latter fno is expressed as comp::Unit<Value<double(*)(double), &fn>, Ratio<250, 1000000>>.

• Template Node. This template is used to express a real-time periodic computation whose relative deadline is none other
than the period itself. This template therefore takes two parameters, the first one being Comp or comp::Unit to express
the computation and the second one being Ratio to express the period. For example, after the statement “typedef
Comp(&fn, Ratio<250, 1000000>) comp1;” is used to identify comp1with the computation carried out by the C/C++

8 PRASTOWO ET AL.

v1

v2

v3

v4

(Zmin, Zmax)

FIGURE 4 A DAG decorated with
an end-to-end delay constraint.

Z v1

v2

v3

v4

FIGURE 5 A DAG decorated
with a correlation constraint.

v5

v6

v7

v8

v9

FIGURE 6 Paths �⃗1 = {(v5, v7), (v7, v8)}
and �⃗2 = {(v6, v7), (v7, v9)}meet at node v7.

function fnwhoseWCET is 250 �s, the periodic repetition of comp1 every 1ms is expressed as Node<comp1, Ratio<1,
1000>>. The period of an instance of template Node is retrievable through the class data member period. For example,
after the statement “typedef Node<comp1, Ratio<1, 1000>> v1;” is used to identify the Tice node with v1, the
expression v1::period retrieves the node’s period, which is Ratio<1, 1000>.

• Templates Chan and Chan_inlit. These templates are used to express a communication buffer (i.e., channel). The buffer
is a register buffer, which buffers only a single value, that facilitates the communication between some pair of the expressed
real-time periodic computations. Both templates therefore take two parameters, the first one being the data type of the
buffered value (e.g., double) and the second one being the initial value of the buffer. If the initial value has an integral data
type (e.g., bool and int), the initial value can be specified directly as the second parameter of Chan_inlit. For example,
if v1 and v2 identify two distinct Tice nodes, then the buffer that is needed for the communication of int data between
v1 and v2 can be expressed as Chan_inlit<int, -1>with −1 being the initial value of the buffer. Otherwise, the initial
value has to be placed in a global variable whose identifier prefixed with & is then specified as the second parameter of
Chan. For example, if v3 and v4 identify two distinct Tice nodes, then the buffer that is needed for the communication
of a 3-element double array data between v3 and v4 can be expressed as Chan<SpatialPos, &spatialPosInit>
with SpatialPos being the user-defined type “struct SpatialPos { double data[3]; };” and spatialPosInit
being a global variable defined by the statement “SpatialPos spatialPosInit = {};”.

• Template Feeder. This template is used to express the unidirectional communications that take place among the expressed
real-time periodic computations. As the communications are unidirectional, Feeder expresses the communications that
take place from a number of data producers (channel writers) to a single data consumer (channel reader). Consequently,
Feeder takes a variable number of parameters with three parameters being the minimum.While the last parameter always
specifies the consumer using Node, the preceding parameters specify producer-channel pairs where the producers are
specified using Node and the channels are specified using either Chan or Chan_inlit. The pairs are specified such
that every producer is immediately followed by the paired channel. For example, if v5, v6, v7, v8, and v9 identify five
distinct Tice nodes whose communication buffers are identified with ch_5_7, ch_6_7, ch_7_8, and ch_7_9, then the
unidirectional internode communication shown in Figure 6 is expressed as three Feeder instances: all arcs going to v7
are expressed as Feeder<v5, ch_5_7, v6, ch_6_7, v7>, the arc going to v8 is expressed as Feeder<v7, v_7_8,
v8>, and the arc going to v9 is expressed as Feeder<v7, v_7_9, v9>. Furthermore, for every producer-channel pair,
the return type of the producer C/C++ function is required to be assignable to the channel’s data type, while the data type
of the k-th channel is required to be capable of initializing the k-th parameter of the consumer’s C/C++ function.

• Template ETE_delay. This template is used to express a last-to-first end-to-end delay constraint by taking four parameters,
the first two being the constrained producer and consumer, which are specified using Node, while the latter two being the
lower and upper bounds of the delay, which are specified using Ratio. For example, if v1 and v4 identify two distinct
Tice nodes such that v1 is a source node, v4 is a sink node, and some end-to-end path exists from v1 to v4 as shown
in Figure 4, then the last-to-first end-to-end delay constraint depicted in Figure 4 is expressed as ETE_delay<v1, v4,
Z_min, Z_max> with Z_min and Z_max being Ratio instances such that the value of Z_min is less than the value of
Z_max.

• Template Correlation. This template is used to express a correlation constraint by taking a variable number of param-
eters with three being the minimum. The first parameter is the constrained consumer, which is specified using Node, and
the second parameter is the correlation threshold, which is specified using Ratio. The remaining parameters are the con-
strained producers, which are specified using Node. For example, if v1, v2, and v4 identify three distinct Tice nodes such

PRASTOWO ET AL. 9

that v1 and v2 are source nodes, v4 is a sink node, and some end-to-end path exists from v1 to v4 as well as from v2 to
v4 as shown in Figure 5, then the correlation constraint depicted in Figure 5 is expressed as Correlation<v4, Z, v1,
v2> with Z being a Ratio instance.

• Template Program. This template is used to express a single complete Tice program. Hence, this template takes a variable
number of parameters that are partitioned into five logical sequences, the first two of which cannot be empty:

Seq-A) This sequence has an HW instance as its sole element.

Seq-B) This sequence has at least one Node instance.

Seq-C) This sequence has zero or more Feeder instances.

Seq-D) This sequence has zero or more ETE_delay instances.

Seq-E) This sequence has zero or more Correlation instances.

For example, if Z_min, Z_max, and Z are some Ratio instances and v1, v2, and so on up to v9 identify nine distinct Tice
nodes whose communication buffers are identified with ch_1_3, ch_1_4, ch_2_4, ch_3_4, ch_5_7, ch_6_7, ch_7_8,
and ch_7_9, then Listing 1, Listing 2, and Listing 3 show complete Tice programs expressing the Tice models shown
in Figure 4, Figure 5, and Figure 6, respectively, such that, if the respective C++ variable-declaration statement can be
compiled successfully, then p is an object whose member function run when called at runtime implements using four
processor cores the Tice model expressed in the object’s type, which is none other than an instance of template Program.

Listing 1: C++ variable-declaration statement embedding a Tice program expressing the Tice model shown in Figure 4.
Program </*Seq -A*/ HW<Core_ids <0, 1, 2, 3>>,

/*Seq -B*/ v1, v2 , v3, v4,
/*Seq -C*/ Feeder <v1, ch_1_3 , v3 >, Feeder <v1, ch_1_4 ,

v2 , ch_2_4 ,
v3 , ch_3_4 , v4>,

/*Seq -D*/ ETE_delay <v1, v4 , Z_min , Z_max >> p;

Listing 2: C++ variable-declaration statement embedding a Tice program expressing the Tice model shown in Figure 5.
Program </*Seq -A*/ HW<Core_ids <0, 1, 2, 3>>,

/*Seq -B*/ v1, v2 , v3, v4,
/*Seq -C*/ Feeder <v1, ch_1_3 , v3 >, Feeder <v1, ch_1_4 ,

v2 , ch_2_4 ,
v3 , ch_3_4 , v4>,

/*Seq -E*/ Correlation <v4, Z, v1 , v2>> p;

Listing 3: C++ variable-declaration statement embedding a Tice program expressing the Tice model shown in Figure 6.
Program </*Seq -A*/ HW<Core_ids <0, 1, 2, 3>>,

/*Seq -B*/ v5, v6 , v7, v8, v9 ,
/*Seq -C*/ Feeder <v5, ch_5_7 ,

v6 , ch_6_7 , v7>,
Feeder <v7, ch_7_8 , v8 >, Feeder <v7, ch_7_9 , v9>> p;

3.2 The Semantics of Tice
The single complete Tice program expressed using Program specifies a Tice model. A Tice model  is a graph that super-
imposes three graphs sharing some common nodes and is formally defined in (1) as a 10-tuple with ℚ≥0 being the set of all
nonnegative rationals, ℚ+ being the set of all positive rationals, ΘM being the set of all C++ object types (i.e., C++ data types

10 PRASTOWO ET AL.

other than void, reference types, and function types), A� being the set of all data items whose type is � ∈ ΘM, and the rest being
defined in the following paragraphs.

 =
(

V ,E, TE2E, TCor, fP ∶ V → ℚ+, fC ∶ V → ℚ+, ft ∶ E → ΘM, fI ∶ E →
⋃

�∈ΘM
A� ,

fE2E ∶ TE2E →
(

ℚ≥0 ×ℚ+) , fCor ∶ TCor → ℚ≥0
) (1)

The next paragraphs and the rest of this paper use the following common notations and definitions:

• The possibly-empty finite set Vs is the set of all source nodes in V as defined in (2).

Vs = { v ∈ V | (v, ⋅) ∈ E, (⋅, v) ∉ E } (2)

• The possibly-empty finite set Va is the set of all sink nodes in V as defined in (3).

Va = { v ∈ V | (v, ⋅) ∉ E, (⋅, v) ∈ E } (3)

• For any two distinct nodes v, v′ ∈ V , a path from v to v′ is denoted �⃗v,v′ and exists if ∅ ⊂ �⃗v,v′ ⊆ E and either �⃗v,v′ =
{(

v, v′
)}

, which can also be written as v→ v′, or �⃗v,v′ =
⋃

1≤j≤i
{(

vj−1, vj
)

,
(

vj , vj+1
)}

for some positive integer i such
that v0 = v and vi+1 = v′, which can also be written as v0 →…→ vj →…→ vi+1.

• For any two distinct nodes v, v′ ∈ V , the proposition that �⃗v,v′ exists is true is denoted v⇝ v′.

• An end-to-end path is some path �⃗v,v′ ⊆ E such that v ∈ Vs and v′ ∈ Va.

• Whenever it is more important to highlight the members of a path than the source and sink nodes of the path, the path
is written as �⃗k for some positive integer k. For example, to highlight the two different possible paths from v1 to v4 in
Figure 4, namely

{(

v1, v4
)}

and
{(

v1, v3
)

,
(

v3, v4
)}

, the paths are written as �⃗1 and �⃗2 instead of as �⃗v1,v4 and �⃗
′
v1,v4

.

• For any two distinct paths �⃗1, �⃗2 ⊆ E, the pair is denoted �⃗1-�⃗2 and is formally defined as �⃗1-�⃗2 =
{

�⃗1, �⃗2
}

. Note that the
pair is not defined as a 2-tuple

(

�⃗1, �⃗2
)

but a set
{

�⃗1, �⃗2
}

to abstract from the ordering of the two elements in the pair so
that �⃗1-�⃗2 = �⃗2-�⃗1.

The first of the three superimposed graphs is a DAG (V ,E) whose nodes v are function blocks (computational nodes) to be
executed periodically every fP(v) time units with an implicit deadline and aWCET of fC(v) such that fC(v) < fP(v) (fC(v) = fP(v)
is disallowed to model a computation that does not terminate and begin at the same time) and whose arcs (v, v′′) ∈ E are directed
communication channels from producers v to consumers v′′. (The DAG source and sink nodes can be used to model sensors
and actuators, respectively.) The set V is finite and nonempty, while the set E is finite and possibly empty. Each channel (v, v′′)
is a data buffer with the following properties:

• The buffer is a register buffer. A register buffer is defined by Feiertag, et al.31 to be a buffer that holds a single data item
at any given time.

• The buffer is typed and holds only data items whose type is ft((v, v′′)), which is the buffer’s type.

• The buffer initially holds some initial data item fI((v, v′′)).

• The buffer has a non-consuming read (i.e., the buffer is a sampling port), and hence, each time the consumer v′′ reads
the channel, the consumer will always read either some initial data item if the producer v has not written anything to the
channel or the latest data item written by the producer (i.e., some unread data item can be lost being overwritten).

• A write and a read that take place at the same time (i.e., synchronously) are sequenced so that the write already completes
before the read starts.

For example, the Tice model shown in Figure 6 has V =
{

v5, v6, v7, v8, v9
}

and E =
{(

v5, v7
)

,
(

v6, v7
)

,
(

v7, v8
)

,
(

v7, v9
)}

.
The second of the three superimposed graphs is a possibly empty undirected graph

(

VE2E, TE2E

)

with no isolated nodes whose
nodes are some connected pairs of the source and sink nodes in V (possibly all of such pairs) as defined in (4) and whose
edges

(

vs, va
)

as defined in (5) are each a last-to-first end-to-end delay constraint applied on one source node vs and one
sink node va. Each constraint’s lower and upper bounds are given by the pair

(

Zmin, Zmax
)

= fE2E

((

vs, va
))

. The second

PRASTOWO ET AL. 11

superimposed graph, therefore, specifies a possibly-empty set of last-to-first end-to-end delay constraints TE2E on the nodes of
the first superimposed graph. For example, the Tice model shown in Figure 4 has VE2E =

{

v1, v4
}

and TE2E =
{(

v1, v4
)}

with
fE2E

((

v1, v4
))

=
(

Zmin, Zmax
)

.

VE2E ⊆
{

vs, va || vs ∈ Vs, va ∈ Va, vs⇝ va
}

(4)

TE2E ⊆
{ (

vs, va
)

∈ VE2E × VE2E

|

|

|

vs ∈ Vs, va ∈ Va
}

(5)

Similarly, the third of the three superimposed graphs is a possibly empty undirected graph
(

VCor,ECor

)

with no isolated nodes
whose nodes are also some connected pairs of the source and sink nodes in V (possibly all of such pairs) as defined in (6) but
whose edges as defined in (7) are not constraints. Instead, a set of the edges EC,va with a common sink node va as defined in (8)
specifies one correlation constraint with threshold fCor

(

EC,va

)

that is applied on the sink node va and one or more source nodes
vs such that

(

vs, va
)

∈ ECor. The third graph, therefore, specifies a possibly-empty set of correlation constraints TCor defined
in (9) on the nodes of the first superimposed graph. For example, the Tice model shown in Figure 5 has VCor =

{

v1, v2, v4
}

,
ECor =

{(

v1, v4
)

,
(

v2, v4
)}

, and TCor =
{{(

v1, v4
)

,
(

v2, v4
)}}

with fCor

({(

v1, v4
)

,
(

v2, v4
)})

= Z.

VCor ⊆
{

vs, va || vs ∈ Vs, va ∈ Va, vs⇝ va
}

(6)

ECor ⊆
{ (

vs, va
)

∈ VCor × VCor

|

|

|

vs ∈ Vs, va ∈ Va
}

(7)

EC,va ∈
(

2{(vs, va) ∈ ECor} ⧵ ∅
)

(8)

TCor ⊆
⋃

va ∈ (VCor ∩Va)

(

2{(vs, va) ∈ ECor} ⧵ ∅
)

(9)

At this point, every element in the 10-tuple that formally defines a Tice model  in (1) has already been defined by the
preceding three paragraphs. However, since the context of the formalism is still on graphs, the notion of confluent nodes will
be defined now to ease the presentation of the formal semantics of correlation constraints in Section 3.2.2. For any two distinct
end-to-end paths �⃗v1,v′ , �⃗v2,v′ ⊆ E that share a common sink node v′ with the source nodes v1 and v2 being possibly the same
node, the path pair �⃗v1,v′-�⃗v2,v′ has a nonempty finite set of confluent nodes V◊

�⃗v1 ,v′ ,�⃗v2 ,v′
defined formally in (10) and intuitively

are consumer nodes where the two paths meet either for the very first time or after branching.

V◊
�⃗1,�⃗2

=
{

v1
|

|

|

(

⋅, v1
)

∈
(

�⃗1 ⧵ �⃗2
) }

∩
{

v2
|

|

|

(

⋅, v2
)

∈
(

�⃗2 ⧵ �⃗1
) }

(10)

For example, in Figure 6, four end-to-end paths exist: �⃗1 = {(v5, v7), (v7, v8)}, �⃗2 = {(v6, v7), (v7, v9)}, �⃗3 = {(v5, v7), (v7, v9)}
and �⃗4 = {(v6, v7), (v7, v8)}. And, while there are six path pairs �⃗1-�⃗2, �⃗1-�⃗3, �⃗1-�⃗4, �⃗2-�⃗3, �⃗2-�⃗4, and �⃗3-�⃗4, only �⃗1-�⃗4 and
�⃗2-�⃗3 have common sink nodes, which are v8 and v9, respectively, and therefore have one or more confluent nodes, which in
this case is just v7 at which the respective two paths meet for the very first time. Formally, V◊

�⃗1,�⃗4
=
{

v ||
|

(⋅, v) ∈
{

(v5, v7)
}}

∩
{

v ||
|

(⋅, v) ∈
{

(v6, v7)
}}

=
{

v7
}

∩
{

v7
}

= {v7} and similarly V◊
�⃗2,�⃗3

= {v7}.

3.2.1 Model of Computation and Communication (MoCC)
For the semantics of Tice models, we adopt time-triggered LET (logical execution time)32 with a sink-node relaxation. A sink-
node relaxation means that, if a system’s response is produced (e.g., actuated) by reading from or writing to some hardware
register, then the computation of every sink node v′ ∈ Va is assumed to read from or write to the hardware register at any time
point throughout the computation. In contrast, the original time-triggered LET requires that the read from orwrite to the hardware
register happens only at certain deterministic time points. The rationale for the relaxation is two Tice’s design decisions:

• The time-triggered LET semantics is implemented at compile time only on the values returned by the C/C++ functions
that are used as the computations of a Tice model’s nodes. Note that this also means that Tice does not check at compile
time whether the C/C++ functions used as the computations of a Tice model’s nodes implement the time-triggered LET
semantics correctly.

12 PRASTOWO ET AL.

v1

v2

v3

v4

(a) The model.

t1(s)

t4(s)

t3(s)

t2(s)

e1,1

e2,2

e1,1

0 2 4 6

e1,2 e1,3

e2,1 e2,3 e2,4 e2,5 e2,6

e1,1 ,e2,2 ,α3,4 e1,2 ,e2,4 ,e1,1

e1,2

e1,3 ,e2,6 ,e1,2

e1,3

e1,4

e2,7

(b) Execution timelines for P1 = P3 = P4 = 2 s, P2 = 1 s, and t1, t2, t3, t4 ∈ [0, 6].

e1,1

0 2 4

t1(s)

t4(s)

t3(s)

t2(s)

(c) End-to-end flows from v1 to v4.

e1,1

0 2 4

e1,2

t1(s)

t4(s)

t3(s)

t2(s)

(d) Confluent flows along �⃗2 = {(v1, v4)} and
�⃗1 = {(v1, v3), (v3, v4)}.

e1,1

e2,4

0 2 4

t1(s)

t4(s)

t3(s)

t2(s)

(e) Confluent flows along �⃗3 = {(v2, v4)} and
�⃗1 = {(v1, v3), (v3, v4)}.

e1,1

e2,2

0 2 4

t1(s)

t4(s)

t3(s)

t2(s)

(f) Confluent flows along �⃗2 = {(v1, v4)} and
�⃗3 = {(v2, v4)}.

FIGURE 7 Executing a Tice model using time-triggered LET MoCC with a sink-node relaxation.

• A Tice model’s sink nodes are identified automatically at compile time based on the nodes whose computations are C/C++

functions whose return type is void (i.e., returning no value). Hence, it follows from the previous design decision that the
time-triggered LET semantics is not implemented for the computation of every Tice model’s sink node. However, nothing
prevents the C/C++ functions from implementing the time-triggered LET semantics on their own.

Aside from that, in this and the next sections, Figure 7a will be used as a running example. The DAG of the Tice model shown
in Figure 7a is the DAG that is shown in Figure 4 and Figure 5 but rotated 90-degree clockwise to aid reading its internode
communication on its execution timelines shown on its right where every timeline would cross their corresponding nodes had
the timelines been extended to the left.
Using time-triggered LET as the MoCC of Tice models, every node v ∈ V and every arc

(

v, v′′
)

∈ E in a Tice model must be
assigned some period fP(v) and some initial data fI

((

v, v′′
))

, respectively. All nodes in a Tice model then release (i.e., make
available for execution) their computations synchronously at time t = 0 (i.e., no offset), and subsequently each node releases its
computation exactly once at the start of every fP(v) time units. Formally, the set of all time points Av at which the computation
of node v is periodically released is defined in (11). For example, the Tice model shown in Figure 7a has its nodes v1, v2, v3,
and v4 assigned in Figure 7b the periods fP(v1) = 2 s, fP(v2) = 1 s, fP(v3) = 2 s, and fP(v4) = 2 s, respectively, and therefore as
depicted in Figure 7b using the upward arrows on every timeline,Av1 = Av3 = Av4 = {0, 2, 4, 6,…} andAv2 = {0, 1, 2, 3,…}.

Av =
{

nfP(v) || n ∈ ℕ
}

(11)

Once released at time t ∈ Av, a computation will be started at some time ts ≥ t and take at most fC(v) time units to complete
at some time tf > ts. Note that tf − ts ≤ fC(v) if the computation experiences no interference that has not been accounted by
fC(v) (e.g., unexpectedly being preempted by a higher priority computation or unexpectedly waiting to access a memory shared
by multiple processor cores). In Tice, a computation is started and completes when the C/C++ function used as a Tice node’s
computation is called and returns, respectively. A Tice model then is implementable on some target hardware if it is possible
to schedule the computation of every node in such a way so that every computation released at time t ∈ Av always completes
before its deadline at the next computation’s release time (t + fP(v)) ∈ Av (i.e., tf < t + fP(v)).
In time-triggered LET, internode communication takes place only at deterministic time points:

• The set of all time points A+
v at which a producer node v ∈ V writes to every outgoing arc’s channel are those given by

(12). Based on (12), every producer node v does not write to their outgoing channels at time t = 0. For example, referring
to Figure 7a, node v1 writes to arcs (v1, v3) and (v1, v4) at every time point in the set A+

v1
= {2, 4, 6,…} as shown in

Figure 7b with curving dashed arrows that at time 2, 4, and 6, respectively, go from the upward arrow on the timeline t1

PRASTOWO ET AL. 13

to the upward arrows on the timelines t3 and t4.

A+
v = Av ⧵ {0} (12)

Furthermore, since a channel initially holds some initial value and can only hold one data item at any given time, a
write by the channel’s producer v at time t = minA+

v overwrites the channel’s initial value, while a write at any time
t′ ∈

(

A+
v ⧵

{

minA+
v

})

overwrites the data item that was written to the channel at time t′ − fP(v). In Figure 7b, a dashed
horizontal line whose right endpoint is a solid circle shows that, due to being overwritten by the data item that is written
at the line’s right endpoint, the data item that is written at the line’s left endpoint is lost without ever being read. On the
other hand, a dashed horizontal arrow shows that, due to being overwritten by the data item that is written at the arrow’s
head, the data item that is written at the arrow’s origin is lost but after being read at least once.

• The set of all time points A∗
v,v′′, t at which a consumer node v′′ ∈ V reads from the channel of some arc (v, v′′) ∈ E when

the producer node v writes at time t ∈ A+
v are those given by (13).

A∗
v,v′′, t =

{

fP(v′′)
⌈

t
fP(v′′)

⌉

+ kfP(v′′)
|

|

|

|

|

fP(v′′)
⌈

t
fP(v′′)

⌉

+ kfP(v′′) < t + fP(v), k ∈ ℕ
}

(13)

For example, referring to Figure 7a, the data item that is found in the channel of arc (v1, v4) when the producer node v1 is
released at time t = 2 is read by the consumer node v4 at every time point in the set A∗

v1,v4,2
= {2} as shown in Figure 7b

with a curving dashed arrow that at time 2 goes from the upward arrow on the timeline t1 to the upward arrow on the
timeline t4. Furthermore, the set A∗

v1,v4,0
is undefined due to 0 ∉ A+

v1
because at time t = 0 every channel holds some

initial data item, not some data item written by the channel’s producer.

On the other hand, as long as internode communication has not taken place between a pair of producer and consumer nodes
(v, v′′) ∈ E because the producer v has not written any data item to the channel of arc (v, v′′), the consumer v′′ always reads some
initial value fI

((

v, v′′
))

at any time point in the set A−
v,v′′ defined in (14). Note that the initial release time is always in the set,

that is, 0 ∈ A−
v,v′′ , and for every node v

′′ shown in Figure 7a, every upward arrow of the timeline of v′′ shown in Figure 7b that is
not marked with ei,j for some positive integers i and j indicates every release time of v′′ that is inA−

v,v′′ for all of its producers v.

A−
v,v′′ =

{

t′′ ∈ Av′′
|

|

|

|

t′′ < minA∗
v,v′′, t , t = min

{

t′ ∈ A+
v
|

|

|

A∗
v,v′′,t′ ≠ ∅

}}

(14)

Lastly, as to the relationship between the periodic computation of every node in a Tice graph and their internode communi-
cation in time-triggered LET, at every release time t ∈ Av, a Tice model’s node v reads the channels of all incoming arcs for the
data items that are the input of the computation that will start at ts ≥ t and complete at tf < t+ fP(v) and, if t ∈ A+

v , the node v
also writes the output of the computation that completes at t′f < t to the channels of all outgoing arcs, all of which occur syn-
chronously (i.e., all reads and writes take zero time to complete also at time t). To implement the synchronous read and write,
some buffering strategy can be used as detailed in Section 6.2. If a producer v and its consumer v′′ happen to be released at
time t ∈ Av synchronously (i.e., t = minA∗

v,v′′, t), the producer’s write on the channel is sequenced before the consumer’s read,
which again can be implemented by some buffering strategy as detailed in Section 6.2. Therefore, given a Tice model’s pair of
producer and consumer nodes

(

v, v′′
)

∈ E, the data dependency that exists between the computations of v and the computations
of v′′ are defined implicitly by the internode communication of time-triggered LET described in the preceding paragraph.

3.2.2 Temporal Constraints
The notion of a last-to-first end-to-end delay is defined on any member of the set of all end-to-end paths Evs,va ⊆

(

2E ⧵ ∅
)

that
exist between some pair of connected source node vs and sink node va in a Tice model as defined in (15). Specifically, in time-
triggered LET, the last-to-first end-to-end delay of every end-to-end path �⃗vs,va ∈ Evs,va is computed at any source node’s release
time t ∈ Avs by the function g�⃗v,v′ ∶ Av → {∞} ∪ℚ+ defined in (16) where v′′ is any node such that (v, v′′)∈ �⃗v,v′ and �⃗v′′,v′ is
�⃗v,v′ ⧵{(v, v′′)}. Intuitively, g�⃗v,v′ (t) = ∞ for some t ∈ Av means that the sample obtained by v at time t is never consumed by
v′, although when |

|

�⃗v,v′ || > 1, the sample may still be consumed by other consumers v′′ where (⋅, v′′) ∈ �⃗v,v′ .

Evs,va =
{

�⃗vs,va ⊆ E |

|

|

vs ∈ Vs, va ∈ Va
}

(15)

14 PRASTOWO ET AL.

g�⃗v,v′ (t) =

⎧

⎪

⎨

⎪

⎩

min
({

∞
}

∪A∗
v,v′,t+fP(v)

)

+ fP

(

v′
)

− t , if |
|

�⃗v,v′ || = 1

min
({

∞
}

∪
{

t∗ + g�⃗v′′ ,v′ (t
∗) ||
|

t∗ ∈ A∗
v,v′′,t+fP(v)

})

− t , otherwise
(16)

For example, Figure 7c illustrates last-to-first end-to-end delay computations on the end-to-end paths �⃗2 = {(v1, v4)} and
�⃗1 = {(v1, v3), (v3, v4)} shown in Figure 7a when the source node v1 is released at time t = 0. To do so, Figure 7c highlights the
relevant computation-communication patterns in Figure 7b by solidifying the dashes of relevant patterns, drawing the irrelevant
patterns in gray, and removing any irrelevant markers. For the path �⃗2 whose length is one arc, the last-to-first end-to-end delay
computed using (16) at time t = 0 results in four time units because fP(v1) = fP(v4) = 2 and A∗

v1,v4,2
= {2}. The computation

can be understood intuitively by considering Figure 7c for the scenario where a hardware sensor that is controlled by v1 samples
at time 0 some cause e1,1 from the system’s environment for which the system has to produce an effect by processing and
communicating the cause to a hardware actuator that is controlled by v4. As shown in Figure 7c, after being sampled at time 0,
the cause is processed by v1 and is written to the channel of arc (v1, v4) at time 2 as indicated by the solid horizontal arrow that
goes from the upward arrow at time 0 to the upward arrow at time 2. Synchronously at time 2, the processed cause is read from
the channel by v4 as indicated by the solid curving arrow from the upward arrow at time 2 on timeline t1 to the upward arrow at
time 2 on timeline t4. Since the deadline of the computation of v4 is at time 4, at the latest the cause will produce an effect by time
4, and therefore, the last-to-first end-to-end delay of the cause sampled at time 0 is four time units for the cause-effect chain �⃗2.
On the other hand, for the cause-effect chain �⃗1, the last-to-first end-to-end delay of the cause is six time units as computed using
(16) because |

|

�⃗1|| = 2, fP(v3) = 2,A∗
v1,v3,2

= {2}, and g{(v3,v4)}(2) = 4 due toA
∗
v3,v4,4

= {4}. Therefore, a last-to-first end-to-end
delay constraint

(

vs, va
)

∈ TE2E specified on a Tice model with a pair of lower and upper bounds
(

Zmin, Zmax
)

= fE2E

((

vs, va
))

is respected if and only if (17) holds where G�⃗v,v′ =
{

g�⃗v,v′ (t)
|

|

|

t ∈ Av

}

. Note that the subtraction by fP

(

va
)

in (17) accounts
for the time-triggered LET relaxation for every sink node explained at the start of Section 3.2.1, and more importantly, (17) has
been shown to be decidable at compile time by Prastowo in Proposition 14.33

Zmin ≤ min
{

minG�⃗v,v′
|

|

|

�⃗v,v′ ∈ Evs,va
}

− fP

(

va
)

< max
{

maxG�⃗v,v′
|

|

|

�⃗v,v′ ∈ Evs,va
}

≤ Zmax (17)

On the other hand, the notion of a correlation is defined on every pair of confluent end-to-end paths �⃗vs,va , �⃗v′s,va ∈
(

⋃

v′′s∈Vs
Ev′′s ,va

)

such that V◊
�⃗vs ,va ,�⃗v′s ,va

≠ ∅ with vs and v′s being not necessarily distinct (note that when vs = v
′
s, the requirement

that V◊
�⃗vs ,va ,�⃗v′s ,va

≠ ∅ ensures that �⃗vs,va ≠ �⃗v′s,va (e.g., the paths {(v1, v4)} and {(v1, v3), (v3, v4)} shown in Figure 7a) where the
samples consumed by va from the two different paths at time t ∈ Ava may be obtained by vs at different times t1, t2 ∈ Avs).
Specifically, in time-triggered LET, the correlation of every such path pair �⃗vs,va-�⃗v′s,va is computed with respect to every node
v◊ ∈ V◊

�⃗vs ,va ,�⃗v′s ,va
at any of v◊’s release time t ∈

(

D�⃗
vs ,v◊

∩ D�⃗
v′s ,v

◊

)

where �⃗vs,v◊ ⊆ �⃗vs,va , �⃗v′s,v◊ ⊆ �⃗v′s,va , and D�⃗v,v′ is defined in

(18) with t min
�⃗v,v′

= min
{

t ∈ Av
|

|

|

g�⃗v,v′ (t) ≠∞
}

. Such computation is done by evaluating
|

|

|

|

ℎ�⃗
vs ,v◊

(t) − ℎ�⃗
v′s ,v

◊
(t)
|

|

|

|

with the function
ℎ�⃗v,v′ ∶ D�⃗v,v′ → Av being defined in (19) where v′′ is any node such that (v, v′′)∈ �⃗v,v′ and �⃗v′′,v′ is �⃗v,v′⧵{(v, v′′)}.

D�⃗v,v′ =
{

t′ ∈ Av′
|

|

|

|

t′ ≥ t min�⃗v,v′
+ g�⃗v,v′

(

t min�⃗v,v′

)

− Pv′
}

(18)

ℎ�⃗v,v′ (t) =

⎧

⎪

⎨

⎪

⎩

fP(v)
(⌊

t
fP(v)

⌋

− 1
)

, if |
|

�⃗v,v′ || = 1

fP(v)
(⌊

ℎ�⃗v′′ ,v′ (t)

fP(v)

⌋

− 1
)

, otherwise
(19)

For example, Figures 7(d)–(f) illustrate how correlations are computed for the path pairs �⃗1-�⃗2, �⃗1-�⃗3, and �⃗2-�⃗3, respectively,
where �⃗1 = {(v1, v3), (v3, v4)}, �⃗2 = {(v1, v4)}, �⃗3 = {(v2, v4)}, and each of the pairs has only one confluent node, namely v4,
because V◊

�⃗1,�⃗2
= V◊

�⃗1,�⃗3
= V◊

�⃗2,�⃗3
= {v4}. The figures show that the correlation at v4 is undefined at t = 0 because when v4 reads

any of its incoming channels synchronously at t = 0, only initial data items are read, that is, 0 ∉
((

Av4 ⧵A
−
v1,v4

)

⧵ A−
v3,v4

)

in Figure 7d, 0 ∉
((

Av4 ⧵A
−
v2,v4

)

⧵A−
v3,v4

)

in Figure 7e, and 0 ∉
((

Av4 ⧵A
−
v1,v4

)

⧵A−
v2,v4

)

in Figure 7f, or equivalently,
0 ∉

(

D�⃗1 ∩ D�⃗2

)

in Figure 7d, 0 ∉
(

D�⃗1 ∩ D�⃗3

)

in Figure 7e, and 0 ∉
(

D�⃗2 ∩ D�⃗3

)

in Figure 7f. On the other hand, Figures 7(d)–
(e) show that the correlation at v4 is undefined at t = 2 because, even though v4 no longer reads only initial data items due to

PRASTOWO ET AL. 15

2 ∈
((

Av4 ⧵A
−
v1,v4

)

⧵A−
v3,v4

)

in Figure 7d and 2 ∈
((

Av4 ⧵A
−
v2,v4

)

⧵A−
v3,v4

)

in Figure 7e, v4 still has not read from both of the
two meeting paths the data items that are initially read by the source nodes of the respective paths, specifically 2 ∉

(

D�⃗1 ∩ D�⃗2

)

in Figure 7d and 2 ∉
(

D�⃗1 ∩ D�⃗3

)

in Figure 7e. In contrast, Figure 7f shows that the correlation at v4 is defined at t = 2 because v4
reads no initial data from the pair �⃗2-�⃗3 due to 2 ∈

((

Av4 ⧵A
−
v1,v4

)

⧵A−
v2,v4

)

and has read from both of the twomeeting paths the
data items that are initially read by the source nodes of the respective paths due to 2 ∈

(

D�⃗2 ∩ D�⃗3

)

, and therefore, the correlation
at v4 can be determined to be ||

|

ℎ{(v1,v4)}(2) − ℎ{(v2,v4)}(2)
|

|

|

= |

|

fP(v1)(1 − 1) − fP(v2)(2 − 1)|| = 1 time unit. The correlation
can be understood intuitively by considering Figure 7f for the scenario where hardware sensors that are controlled by v1 and v2
sample at time 0 and 1 some causes e1,1 and e2,2, respectively, from the system’s environment for which the system has to produce
an effect by processing and communicating the cause to a hardware actuator that is controlled by v4. As shown in Figure 7f, after
being sampled at time 0, cause e1,1 is processed by v1 and is written to the channel of arc (v1, v4) at time 2 as indicated by the solid
horizontal arrow that goes from the upward arrow at time 0 to the upward arrow at time 2. Similarly, after being sampled at time
1, cause e2,2 is processed by v2 and is written to the channel of arc (v2, v4) at time 2 as indicated by the solid horizontal arrow that
goes from the upward arrow at time 1 to the upward arrow at time 2. Synchronously at time 2, the processed causes are read from
the channels by v4 as indicated by the solid curving arrows from the upward arrows at time 2 on timelines t1 and t2, respectively, to
the upward arrow at time 2 on timeline t4. Consequently, v4 will produce an effect based on causes that are sampled by one time-
unit apart. For the same reason, Figures 7(d)–(e) show that the correlations at v4 is defined at t = 4where the correlations can be
determined to be ||

|

ℎ{(v1,v4)}(4) − ℎ{(v1,v3),(v3,v4)}(4)
|

|

|

=
|

|

|

|

fP(v1)(2 − 1) − fP(v1)
(⌊ℎ{(v3 ,v4)}(4)

fP(v1)

⌋

− 1
)

|

|

|

|

=
|

|

|

|

2 − 2
(⌊

2
2

⌋

− 1
)

|

|

|

|

= 2

time units and |

|

|

ℎ{(v2,v4)}(4) − ℎ{(v1,v3),(v3,v4)}(4)
|

|

|

=
|

|

|

|

fP(v2)(4 − 1) − fP(v1)
(⌊ℎ{(v3 ,v4)}(4)

fP(v1)

⌋

− 1
)

|

|

|

|

=
|

|

|

|

3 − 2
(⌊

2
2

⌋

− 1
)

|

|

|

|

= 3
time units, respectively. Therefore, a correlation constraint EC,va ∈ TCor specified on a Tice model with correlation threshold

Z = fCor

(

EC,va

)

is respected if and only if (20) holds where ℍ
�⃗
vs ,v◊

�⃗
v′s ,v

◊
=
{

|

|

|

|

ℎ�⃗
vs ,v◊

(t′) − ℎ�⃗
v′s ,v

◊
(t′)

|

|

|

|

|

|

|

|

t′ ∈
(

D�⃗
vs ,v◊

∩ D�⃗
v′s ,v

◊

)

}

.

Note that (20) has been shown to be decidable at compile time by Prastowo in Proposition 16.33

max

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

maxℍ
�⃗
vs ,v◊

�⃗
v′s ,v

◊

|

|

|

|

|

|

|

�⃗vs,va , �⃗v′s,va ∈
⋃

v′′s ∈{ vs | (vs,va)∈EC,va }
Ev′′s ,va , �⃗vs,va ≠ �⃗v′s,va ,

v◊ ∈ V◊
�⃗vs ,va ,�⃗v′s ,va

, �⃗vs,v◊ ⊆ �⃗vs,va , �⃗v′s,v◊ ⊆ �⃗v′s,va

⎫

⎪

⎬

⎪

⎭

∪
{

0
}

⎞

⎟

⎟

⎟

⎠

≤ Z (20)

4 THE ROSACE CASE STUDY

The ROSACE case study is a complete case study in engineering a longitudinal flight controller, which controls the alti-
tude and air speed of an airborne aircraft. The case study champions a design methodology with three stages to facilitate the
communication between the control and software engineers in the second stage by means of plotted graphs.
In the case study’s first stage, the control engineers design the controller usingMATLAB/SIMULINK. Once done, the controlled

plant (i.e., aircraft) is simulated in MATLAB/SIMULINK with its altitude, air speed, and some other outputs traced and plotted
as reference graphs for the case where, starting at the flight condition whose altitude and air speed are 10 km and 230 m/s,
respectively, the controller’s reference input for the altitude is step changed to 11 km at the start of the simulation (i.e., at t = 0,
which in the case study’s resulting graphs is offset by 50 s to ease reading). In the case study’s second stage, the software engineers
implement the MATLAB/SIMULINK model as embedded software and execute the resulting software on their computers while
tracing some output data produced during execution (possibly using some software simulator that simulates the software’s real-
time execution). The trace data can then be plotted to be compared with the reference graphs as the basis for discussions with the
control engineers to reach an agreement on the controller’s design, which, if not yet reached, can be done either by modifying the
software (repeating stage two) or the MATLAB/SIMULINK model (repeating the first two stages). Upon reaching an agreement,
the software engineers in the last stage embed the software on the target hardware to validate the resulting system in the same
manner (i.e., by plotting the target hardware’s outputs and comparing them to the reference graphs).
For our purpose, only the case study’s second stage is used in the rest of this section where we express the ROSACE’s

MATLAB/SIMULINK model as a Tice model that is then programmed as a Tice program by using the Tice library API. In doing
so, we have used the work of Pierre-Emmanuel Hladik found in the ROSACE repository34 because Hladik has implemented the
MATLAB/SIMULINK model in the real-time language GIOTTO whose MoCC is time-triggered LET,32 easing our work.

16 PRASTOWO ET AL.

#include <tice/v1.hpp>
#include "tice_model_implementation.hpp"

using namespace tice::v1;

typedef Node<f_h_s , Ratio<5 , 1000>> h_s ; // Altitude sensor
typedef Node<f_a_z_s, Ratio<5 , 1000>> a_z_s; // Vertical acceleration sensor
typedef Node<f_q_s , Ratio<5 , 1000>> q_s ; // Pitch rate sensor
typedef Node<f_V_z_s, Ratio<5 , 1000>> V_z_s; // Vertical speed sensor
typedef Node<f_V_a_s, Ratio<5 , 1000>> V_a_s; // True airspeed sensor
typedef Node<f_h_f , Ratio<10, 1000>> h_f ; // Altitude filter
typedef Node<f_a_z_f, Ratio<10, 1000>> a_z_f; // Vertical acceleration filter
typedef Node<f_q_f , Ratio<10, 1000>> q_f ; // Pitch rate filter
typedef Node<f_V_z_f, Ratio<10, 1000>> V_z_f; // Vertical speed filter
typedef Node<f_V_a_f, Ratio<10, 1000>> V_a_f; // Airspeed filter
typedef Node<f_h_h , Ratio<20, 1000>> h_h ; // Altitude hold
typedef Node<f_V_z , Ratio<20, 1000>> V_z ; // Altitude control
typedef Node<f_V_a , Ratio<20, 1000>> V_a ; // Airspeed control
typedef Node<f_L , Ratio<5 , 1000>> L ; // Elevator actuator
typedef Node<f_E , Ratio<5 , 1000>> E ; // Engine thrust actuator
typedef Program</* 1*/target_hw,
 /* 2*/h_s, /* 3*/a_z_s, /* 4*/q_s, /* 5*/V_z_s, /* 6*/V_a_s,
 /* 7*/h_f, /* 8*/a_z_f, /* 9*/q_f, /*10*/V_z_f, /*11*/V_a_f,
 /*12*/h_h, /*13*/V_z , /*14*/V_a, /*15*/L , /*16*/E,
 /*17*/Feeder<h_s , h_s_to_h_f , h_f>,
 /*18*/Feeder<a_z_s, a_z_s_to_a_z_f, a_z_f>,
 /*19*/Feeder<q_s , q_s_to_q_f , q_f>,
 /*20*/Feeder<V_z_s, V_z_s_to_V_z_f, V_z_f>,
 /*21*/Feeder<V_a_s, V_a_s_to_V_a_f, V_a_f>,
 /*22*/Feeder<h_f , h_f_to_h_h , h_h>,
 /*23*/Feeder<h_h , h_h_to_V_z ,
 a_z_f, a_z_f_to_V_z ,
 q_f , q_f_to_V_z ,
 V_z_f, V_z_f_to_V_z , V_z>,
 /*24*/Feeder<q_f , q_f_to_V_a ,
 V_z_f, V_z_f_to_V_a ,
 V_a_f, V_a_f_to_V_a , V_a>,
 /*25*/Feeder<V_z , V_z_to_L , L>,
 /*26*/Feeder<V_a , V_a_to_E , E>
 /*27*/TEMPORAL_CONSTRAINTS> Prog;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

hf

hh
azf

Vaf

Vzf
Va E

qf Vz Lqs

hs

azs

Vzs

Vas

FIGURE 8 ROSACE’s MATLAB/SIMULINK model expressed as Tice model (left) and its expression in Tice language (right).

4.1 The Embedded Software Programmed in Tice
Figure 8 shows the ROSACE’s MATLAB/SIMULINK model as a Tice model on the left, and on the right, the Tice model is
programmed as a Tice program using the Tice library API, which is included in line 1 and is already described in Section 3.1. The
Tice model’s nodes shown on the left are then assigned their computations and periods in lines 6–20. The assigned computations
are declared in the C++ header file included in line 2. Once every node has been declared, the Tice model is expressed in
lines 21–40. To aid reading, every parameter has been preceded by a comment specifying the parameter’s position. While
parameter 1 identifies the target hardware that the Tice model will be executed on, which is declared in the file included in
line 2, parameters 2–16 draw all of the nodes shown on the figure. Parameters 17–26, on the other hand, draw all of the arcs
where all arcs pointing to the same consumer node is drawn altogether by a single Feeder. For example, parameter 24 draws
all of the arcs that point to Va by specifying as the last parameter V_a, as the first producer-channel pair q_f and q_f_to_V_a,
which draws the arc whose tail is at qf and whose body represents the channel q_f_to_V_a, as the second producer-channel
pair V_z_f and V_z_f_to_V_a to draw the arc that originates from Vzf with V_z_f_to_V_a as its channel, and as the third
producer-channel pair V_a_f and V_a_f_to_V_a to draw the last arc. All of the channels are declared in the file included in
line 2. Lastly, starting with parameter 27, the rest of the parameters, if any, specify a number of last-to-first end-to-end delay
and correlation constraints. As the case study expresses no such constraint on the MATLAB/SIMULINK model, the preprocessing
macro TEMPORAL_CONSTRAINTS will expand to nothing at compile time (see Section 4.2 for the case where the macro should
expand to some ETE_delay and Correlation instances). Once the Tice model has been programmed, it can be implemented
with some specific set of function blocks, which determines the kinds of data and the ways the data are to be processed, and
for some specific target hardware, which determines the WCETs of the function blocks as well as their mappings to execution
threads and the scheduling of the threads on the available processor cores.
Figure 9 shows the implementation of the Tice model with the set of function blocks derived from Pierre-Emmanuel Hladik’s

work (the data-dependent part in lines 4–39) and for certain target hardware with four homogeneous processor cores (the

PRASTOWO ET AL. 17

#include <tice/v1.hpp>
using namespace tice::v1;

// Data-dependent part
extern const double
 init_h_s, init_a_z_s, init_q_s, init_V_z_s, init_V_a_s,
 init_h_f, init_a_z_f, init_q_f, init_V_z_f, init_V_a_f,
 init_h_h, init_V_z , init_V_a;
typedef Chan<double, &init_h_s > h_s_to_h_f ;
typedef Chan<double, &init_a_z_s> a_z_s_to_a_z_f;
typedef Chan<double, &init_q_s > q_s_to_q_f ;
typedef Chan<double, &init_V_z_s> V_z_s_to_V_z_f;
typedef Chan<double, &init_V_a_s> V_a_s_to_V_a_f;
typedef Chan<double, &init_h_f > h_f_to_h_h ;
typedef Chan<double, &init_h_h > h_h_to_V_z ;
typedef Chan<double, &init_a_z_f> a_z_f_to_V_z ;
typedef Chan<double, &init_q_f > q_f_to_V_z ;
typedef Chan<double, &init_V_z_f> V_z_f_to_V_z ;
typedef Chan<double, &init_q_f > q_f_to_V_a ;
typedef Chan<double, &init_V_z_f> V_z_f_to_V_a ;
typedef Chan<double, &init_V_a_f> V_a_f_to_V_a ;
typedef Chan<double, &init_V_z > V_z_to_L ;
typedef Chan<double, &init_V_a > V_a_to_E ;

double f_a_z_s_impl(); double f_h_s_impl();
double f_V_z_s_impl(); double f_q_s_impl();
double f_V_a_s_impl();
double f_h_f_impl(const double &h_s);
double f_a_z_f_impl(const double &a_z_s);
double f_q_f_impl(const double &q_s);
double f_V_z_f_impl(const double &V_z_s);
double f_V_a_f_impl(const double &V_a_s);
double f_h_h_impl(const double &h_f);
double f_V_z_impl(const double &h_h, const double &a_z_f,
 const double &q_f, const double &V_z_f);
double f_V_a_impl(const double &q_f, const double &V_z_f,
 const double &V_a_f);
void f_L_impl(const double &V_z);
void f_E_impl(const double &V_a);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// Hardware-dependent part
#ifdef TICE_V1_NOGEN
typedef HW<Core_ids<>> target_hw;
#else
typedef HW<Core_ids<0, 1,
 2, 3>> target_hw;
#endif

//// Function block WCETs on target_hw
typedef Comp(&f_h_s_impl,
 Ratio<1, 1000>) f_h_s;
typedef Comp(&f_a_z_s_impl,
 Ratio<1, 1000>) f_a_z_s;
typedef Comp(&f_q_s_impl,
 Ratio<1, 1000>) f_q_s;
typedef Comp(&f_V_z_s_impl,
 Ratio<1, 1000>) f_V_z_s;
typedef Comp(&f_V_a_s_impl,
 Ratio<1, 1000>) f_V_a_s;
typedef Comp(&f_h_f_impl,
 Ratio<1, 1000>) f_h_f;
typedef Comp(&f_a_z_f_impl,
 Ratio<1, 1000>) f_a_z_f;
typedef Comp(&f_q_f_impl,
 Ratio<1, 1000>) f_q_f;
typedef Comp(&f_V_z_f_impl,
 Ratio<1, 1000>) f_V_z_f;
typedef Comp(&f_V_a_f_impl,
 Ratio<1, 1000>) f_V_a_f;
typedef Comp(&f_h_h_impl,
 Ratio<1, 1000>) f_h_h;
typedef Comp(&f_V_z_impl,
 Ratio<1, 1000>) f_V_z;
typedef Comp(&f_V_a_impl,
 Ratio<1, 1000>) f_V_a;
typedef Comp(&f_L_impl,
 Ratio<1, 1000>) f_L;
typedef Comp(&f_E_impl,
 Ratio<1, 1000>) f_E;

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

FIGURE 9 The content of the C++ header file tice_model_implementation.hpp.

hardware-dependent part in lines 40–78). In lines 9–23, the data-dependent part declares every channel that implements the arcs
of the Tice model. The channels are typed by the kinds of data to be communicated, which are specified as their first parame-
ters. The channel types will ensure the compatibility between the output ports of the producers and the connected input ports of
the consumers. Consequently, in lines 25–39, the data-dependent part also declares the function block implementations whose
return types are the types of the producer output ports and whose parameters specify the types of the consumer input ports. This
is because whenever a producer changes its output port type or a consumer changes one of its input port types, the connected
channel may need to change its type as well, which in turn may necessitate the other endpoint’s input/output port type to change
as well. The change, however, is not always necessary because some types are and can be made compatible in C++. For example,
changing all output and input port types in lines 25–39 to float requires no change to the channel declarations as far as the
language is concerned. Aside from that, the initial data of every channel are stored in constant variables typed double declared
in lines 5–8. The types of the initial data may need to change when the types of the initialized channels change, and vice versa.
As before, the change is not always necessary. For example, changing the variable types to float requires no change to the
channel declarations.
On the other hand, the hardware-dependent part in lines 49–78 declares the WCETs of the function blocks on the target

hardware. For our purpose, there is no need to derive the tightest WCETs, and therefore, we have assigned the same WCET
to every function block. Lastly in lines 41–46, the hardware-dependent part declares the target hardware itself. A special target
hardware specifying no ID will be used as the target hardware if the preprocessing macro TICE_V1_NOGEN, which is also a
Tice API member, is defined for the case described in Section 4.2. Otherwise, the target hardware makes available four cores to
execute the function blocks.
At this point, it should be easy to see that, as a real-time language whose semantics is already described in Section 3.2, Tice is

integrable seamlessly with other C/C++ software components. For example, the data-dependent part of the Tice model’s imple-
mentation can easily use other kinds of data defined by other C/C++ software components, such as replacing the unitless double
with some unit-aware C++ types to avoid the kind of mismatch that destroyed the maiden flight of Ariane 5 rocket.35 Lastly, as

18 PRASTOWO ET AL.

$ make -B -s CXX=/usr/bin/g++-9 CXXFLAGS='-D TICE_V1_NOGEN -D TEMPORAL_CONSTRAINTS=", \
ETE_delay<h_s, L, Ratio<0>, h_s::period> \
"' 2>&1 | head -n 3
In file included from tice_model.hpp:26,
 from main.cpp:22:
../../../tice/v1.hpp: In instantiation of ‘struct
tice::v1::error::program::end_to_end_delay_is_between_min_and_max_delays<false, 27, std::ratio<0>,
std::ratio<60001, 1000000>, std::ratio<5, 1000>, tice::v1::error::Path_forming_node_pos<2, 7, 12,
13, 15>, 2>’:

 1
 2
 3
 4
 5
 6
 7
 8
 9

(a) GCC version 9.1.0.

$ make -B -s CXX=/usr/bin/clang++-9 CXXFLAGS='-D TICE_V1_NOGEN -D TEMPORAL_CONSTRAINTS=", \
ETE_delay<h_s, L, Ratio<0>, h_s::period> \
"' 2>&1 | head -n 6
In file included from main.cpp:22:
In file included from ./tice_model.hpp:26:
../../../tice/v1.hpp:2354:11: fatal error: static_assert failed "Min and max end-to-end delays are
not respected"
 static_assert(arg__is_between_min_and_max_delays,
 ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../../tice/internals/v1/v1_internals_program.hpp:7036:11: note: in instantiation of template
class 'tice::v1::error::program::end_to_end_delay_is_between_min_and_max_delays<false, 27,
std::ratio<0, 1>, std::ratio<60001, 1000000>, std::ratio<5, 1000>,
tice::v1::error::Path_forming_node_pos<2, 7, 12, 13, 15>, 2>' requested here

1
2
3
4
5
6
7
8
9
10
11
12
13

(b) Clang version 9.0.0.

FIGURE 10 Tice and off-the-shelf C++ compilers as modeling tools to figure out the last-to-first end-to-end delay from ℎs to L.

a real-time language that is compilable using off-the-shelf C++ compilers, the Tice program shown in Figure 8 and its particular
implementation shown in Figure 9 along with other C++ source program files in the directory experiments/v1-rosace in the
Tice repository36 can be compiled by GCC and Clang to produce embedded software whose execution on the target hardware
behaves according to the ROSACE’s reference graphs.

4.2 Using Tice and Off-The-Shelf C++ Compilers as a Modeling Tool
As a model-based real-time language, Tice together with an off-the-shelf compiler can also be used as a modeling tool. For
example, an engineer can request an off-the-shelf C++ compiler to analyze the Tice model in Figure 8 for its last-to-first end-
to-end delay and correlation properties. For example, referring to the left part of Figure 8, a question can be asked about the
model, “what is the last-to-first end-to-end delay from ℎs to L?” To answer the design question, an end-to-end delay constraint
can be attached to nodes ℎs and L with lower and upper bounds set to zero and some positive value, respectively, as shown in
line 2 of both Figure 10a and Figure 10b. In both figures, lines 1–3 compile the Tice program in the same way it is compiled
to obtain the ROSACE embedded software described in Section 4.1 except that the CXXFLAGS is set to specify the compiler
option -D twice. The first -D option defines the macro TICE_V1_NOGEN to save compilation time by preventing the compilers
from mapping the Tice model to a set of real-time tasks due to line 42 of Figure 9 defining target hardware with no processor
core and from generating any executable code implementing the Tice model due to Tice library’s code generator being turned
off when the macro is defined. On the other hand, the second -D option replaces the macro TEMPORAL_CONSTRAINTS in line 40
of Figure 8 with an ETE_delay that expresses the desired end-to-end delay constraint. By setting the CXXFLAGS in that manner,
as shown in line 4 onwards of both Figure 10a and Figure 10b, the compilers correctly fail to compile as compilers but correctly
succeed to answer the design question as modeling tools.
As shown in the last three lines of both figures, the compilers tell by an instance of the class template end_to_end_delay_-

is_between_min_and_max_delays that the last-to-first end-to-end delay from ℎs to L is greater than the period assigned
to ℎs, which is std::ratio<5, 1000> (i.e., 5 ms), because, along the path that goes through parameters 2 (ℎs), 7 (ℎf), 12
(ℎℎ), 13 (Vz), and 15 (L) shown in Figure 8 (i.e., tice::v1::error::Path_forming_node_pos<2, 7, 12, 13, 15>),
the data sampled by the source node (i.e., ℎs) when the source node is released for the second time (i.e., the 2 in the last
line) experiences a last-to-first end-to-end delay of about 60 ms (i.e., std::ratio<60001, 1000000>). Note that based on
the time-triggered LET semantics given in Section 3.2.1, it is not hard to see that the delay is exactly 60 ms due to being a
multiple of the period of the path’s sink nodeL; the reason why Tice library reports std::ratio<60001, 1000000> instead of
std::ratio<60, 1000> or std::ratio<6, 100> or std::ratio<3, 50> is to indicate that the violated bound is the upper

PRASTOWO ET AL. 19

$ make -B -s CXX=/usr/bin/g++-9 CXXFLAGS='-D TICE_V1_NOGEN -D TEMPORAL_CONSTRAINTS=", \
Correlation<L, Ratio<0>, h_s, a_z_s, q_s, V_z_s> \
"' 2>&1 | head -n 3
In file included from tice_model.hpp:26,
 from main.cpp:22:
../../../tice/v1.hpp: In instantiation of ‘struct
tice::v1::error::program::correlation_is_within_threshold<false, 27, std::ratio<20000, 1000000>,
std::ratio<0>, tice::v1::error::Path_forming_node_pos<2, 7, 12, 13>,
tice::v1::error::Path_forming_node_pos<3, 8, 13>, 3>’:

 1
 2
 3
 4
 5
 6
 7
 8
 9

(a) GCC version 9.1.0.

$ make -B -s CXX=/usr/bin/clang++-9 CXXFLAGS='-D TICE_V1_NOGEN -D TEMPORAL_CONSTRAINTS=", \
Correlation<L, Ratio<0>, h_s, a_z_s, q_s, V_z_s> \
"' 2>&1 | head -n 6
In file included from main.cpp:22:
In file included from ./tice_model.hpp:26:
../../../tice/v1.hpp:2505:11: fatal error: static_assert failed "Correlation threshold is not
respected"
 static_assert(arg__is_within_threshold,
 ^ ~~~~~~~~~~~~~~~~~~~~~~~~
../../../tice/internals/v1/v1_internals_program.hpp:7744:11: note: in instantiation of template
class 'tice::v1::error::program::correlation_is_within_threshold<false, 27, std::ratio<20000,
1000000>, std::ratio<0, 1>, tice::v1::error::Path_forming_node_pos<2, 7, 12, 13>,
tice::v1::error::Path_forming_node_pos<3, 8, 13>, 3>' requested here

1
2
3
4
5
6
7
8
9
10
11
12
13

(b) Clang version 9.0.0.

FIGURE 11 Tice and off-the-shelf C++ compilers as modeling tools to figure out the correlation of all sensed data flowing toL.

bound instead of the lower bound. An instance of end_to_end_delay_is_between_min_and_max_delays always has as its
first parameter the value false, as its second parameter the position of the violated constraint on the parameter list of Program
(27 in this case), as its third parameter the constraint’s lower bound (std::ratio<0> in Figure 10a and std::ratio<0, 1>
in Figure 10b), and as the remaining parameters the violating end-to-end delay, the constraint’s upper bound, the violating path,
and the source node’s violating release ordinal as already described. Based on the answer, the engineer can easily revise the
upper bound of the constraint given in the CXXFLAGS to 60 ms (by replacing h_s::period by Ratio<60, 1000>, which while
possible is not written as Ratio<6, 100> or Ratio<3, 50> to highlight by the second parameter the fact that the time unit
is 1/1000 s) and recompile the software to iteratively find out whether the end-to-end delay is still within the desired range. If
the compilation succeeds, it means that the last-to-first end-to-end delay along any possible end-to-end paths from ℎs to L is
between the constraint’s lower and upper bounds.
Similarly, to answer design questions about data correlations, the engineer can constraint the relevant source and sink nodes

with correlation constraints whose thresholds are zero. For example, to find out the correlation among all of the source data of
the sink node L shown in Figure 8, a correlation constraint can be specified on all of the source nodes by setting the value of
TEMPORAL_CONSTRAINTS in the CXXFLAGS to “, Correlation<L, Ratio<0>, h_s, a_z_s, q_s, V_z_s>” as shown in
line 2 of both Figure 11a and Figure 11b. As before, the compilations correctly fail to compile but correctly succeed to answer
the design question by an instance of the class template correlation_is_within_threshold as shown in the last three lines
of both figures. Every instance of the template comes with seven parameters: (1) the value false, (2) the position of the violated
constraint on the parameter list of template Program (27 in this example), (3) the violating correlation (20 ms in this example),
(4) the constraint’s threshold (0 ms in this example), (5) the first of the two meeting paths (ℎs → ℎf → ℎℎ → Vz in this example),
(6) the second of the two meeting paths (azs → azf → Vz in this example), and (7) the release ordinal of the confluent node
where the violation is witnessed (the third release of Vz in this example). Based on the answer, the engineer can easily revise
the constraint’s threshold to 20 ms and recompile the software to iteratively find out whether the data correlation is as desired.
If the compilation succeeds, it means that L can process data whose ages differ by at most the constraint’s correlation threshold.
While the interactive question-and-answer sessions described in the preceding two paragraphs may seem too tedious to find

out some end-to-end delay or correlation whose actual value can indeed be just computed and reported right away by the off-
the-shelf C++ compilers, the interactive question-and-answer sessions reflect the interactive sessions that in the traditional MBD
workflow shown in Figure 1 take place not when using an off-the-shelf C++ compiler but when using a separate model-based
tool (e.g., MATLAB/SIMULINK). Therefore, the main objective of the preceding two paragraphs in describing the interactive
question-and-answer sessions is to show how an off-the-shelf C++ compiler can indeed be usable as a model-based tool in the
proposed Tice MBD workflow shown in Figure 1. Furthermore, since C++ active libraries are Turing-complete and seamlessly

20 PRASTOWO ET AL.

../../../tice/v1.hpp: In instantiation of ‘struct
tice::v1::error::program::gedf_schedulability_test_is_successful<false, std::ratio<2500001,
1000000>, std::ratio<2285715, 1000000>, std::ratio<500000, 1000000>, std::ratio<571429, 1000000>
>’:
../../../tice/v1.hpp:2518:25: error: static assertion failed: gEDF (global earliest-deadline
first) backend cannot realize the expressed Tice model because the total processor utilization is
greater than its bound and/or the processor utilization of some task exceeds the maximum bound
(Try reducing the WCETs of the function blocks first before redesigning the Tice model with
greater periods and/or less nodes)

 1
 2
 3
 4
 5
 6
 7
 8
 9

(a) GCC version 9.1.0.

../../../tice/v1.hpp:2518:11: fatal error: static_assert failed "gEDF (global earliest-deadline
first) backend cannot realize the expressed Tice model because the total processor utilization is
greater than its bound and/or the processor utilization of some task exceeds the maximum bound
(Try reducing the WCETs of the function blocks first before redesigning the Tice model with
greater periods and/or less nodes)"
 static_assert(arg__is_successful,
 ^ ~~~~~~~~~~~~~~~~~~
../../../tice/internals/v1/v1_internals_program.hpp:7911:11: note: in instantiation of template
class 'tice::v1::error::program::gedf_schedulability_test_is_successful<false,
std::ratio<2500001, 1000000>, std::ratio<2285715, 1000000>,
std::ratio<500000, 1000000>, std::ratio<571429, 1000000> >' requested here

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

(b) Clang version 9.0.0.

FIGURE 12Tice and off-the-shelf C++ compilers as modeling tools catch an inconsistency when integrating the generated code.

integrable with one another, it is conceivable to develop another C++ active library that extends Tice by bringing the experience
of using MATLAB/SIMULINK into the proposed Tice MBD workflow.37
Lastly, any of the temporal constraints produced during the modeling process can be incorporated into the model by taking

the constraint out of the CXXFLAGS and placing it just before the TEMPORAL_CONSTRAINTS found on the parameter list of the
template Program shown in Figure 8. Every incorporated constraint then becomes one of the program safety properties that
the compiler will enforce at compile time automatically. Coupled with C and C++ being the de facto languages in embedded
software engineering, this means that Tice and an off-the-shelf C++ compiler as a modeling tool is capable of not only generating
the code implementing the model but also integrating the generated code with the rest of the embedded software automatically.
In this way, if some information about the other C/C++ programs is incorporated into the Tice model through their header files,
the information will be synchronized and checked by the compiler automatically at compile time, ensuring the integrity of the
resulting embedded software. For example, suppose the WCETs of the function blocks shown on the hardware-dependent part
of Figure 9 are replaced by macros so that the WCETs can be supplied automatically by some external tool that defines the
macros at compile time after analyzing the definitions of the function blocks. Then, Tice and an off-the-shelf C++ compiler as
a modeling tool can raise an error when the generated code cannot be integrated with the function blocks due to their WCETs
as illustrated in Figure 12.

5 THE COMPILATION TIMES OF TICE PROGRAMS

The main objective of this section is to show the practical feasibility of the proposed Tice MBD workflow shown in Figure 1.
Specifically, considering the design session described in Section 4.2 concerning the Tice model shown in Figure 8, this section
shows how long it would take in the worst case to answer one design question (i.e., one compilation that ends either successfully
or with an error as illustrated in Figure 10a). Therefore, this section presents in Section 5.1 the constructions of Tice models
that approximate cases represented by the ROSACE case study in the aviation domain and, to some extent, the WATERS 2017
Industrial Challenge in the automotive domain. This section then presents in Section 5.2 the compilation times of GCC and
Clang as popular off-the-shelf C++ compilers when they compile the constructed Tice models. The compilation times analyzed
in Section 5.2.1 up to Section 5.2.8 show that the proposed Tice MBD workflow is practically feasible for Tice programs that
are represented by the ROSACE case study and, to some extent, the WATERS 2017 Industrial Challenge.

PRASTOWO ET AL. 21

5.1 Evaluation Setup
In constructing the Tice models to be evaluated, we use the following six criteria illustrated using the ROSACE case study
shown in Figure 8:

Criterion 1 The number of nodes. ROSACE has 15 nodes, while the Tice models used in the evaluations have up to 27 nodes.

Criterion 2 The number of arcs. ROSACE has 15 arcs, while the Tice models used in the evaluations involving the use of
arcs have between 21 and 44 arcs, inclusive.

Criterion 3 The number of distinct end-to-end paths. ROSACE has seven distinct end-to-end paths:
�⃗1 = ℎs → ℎf → ℎℎ → Vz → L
�⃗2 = azs → azf → Vz → L
�⃗3 = qs → qf → Vz → L
�⃗4 = Vzs → Vzf → Vz → L

�⃗5 = qs → qf → Va → E
�⃗6 = Vzs → Vzf → Va → E
�⃗7 = Vas → Vaf → Va → E

On the other hand, the Tice models used in the evaluations involving the use of arcs, except those in Section 5.2.7
and Section 5.2.8, have 32 distinct end-to-end paths, which is the maximum number of end-to-end paths
attainable without forming a cycle with the least value of Criterion 2, which is 21 arcs.

Criterion 4 The length of the shortest end-to-end path. ROSACE’s shortest end-to-end paths (e.g., �⃗2 and �⃗3) have a length
of three arcs, while the Tice models used in the evaluations involving the use of arcs have up to 21 arcs.

Criterion 5 The number of distinct end-to-end path pairs that have confluent nodes. ROSACE has nine distinct end-to-end
path pairs that have confluent nodes:

• Six pairs whose confluent node is Vz: (1) �⃗1-�⃗2 (2) �⃗1-�⃗3 (3) �⃗1-�⃗4
(4) �⃗2-�⃗3 (5) �⃗2-�⃗4 (6) �⃗3-�⃗4

• Three pairs whose confluent node is Va: (1) �⃗5-�⃗6 (2) �⃗5-�⃗7 (3) �⃗6-�⃗7

On the other hand, the Tice models used in the evaluations involving the use of arcs have 496 distinct path pairs,
except for those in Section 5.2.8 that have 861 distinct path pairs.

Criterion 6 The number of times the non-isolated node(s) with the shortest period is released in the hyperperiod (i.e., least-
common multiple of the periods) of all non-isolated nodes. In ROSACE, the shortest period of the non-isolated
nodes is 5 ms and the hyperperiod of all non-isolated nodes is lcm{5 ms, 10 ms, 20 ms} = 20 ms so that the
nodes with the shortest period is released 20 ms∕5 ms = 4 times in the hyperperiod. On the other hand, the Tice
models used in the evaluations involving the use of distinct periods release the nodes with the shortest period
up to a thousand times.

Then, with the objective of figuring out the compilation times of cases represented by the ROSACE case study and, to some
extent, the WATERS 2017 Industrial Challenge, the six criteria are used to define eight sets of Tice models shown in Table 1
where:

• Every node in the compiled Tice models is assigned a WCET of one millisecond (100 �s for the models measured in
Section 5.2.7 and Section 5.2.8) because assigning different WCET values to different nodes practically has no effect on
the compilation times.

• Every model involving the use of arcs (i.e., k2 ≠ 0) is constructed in such a way so that it has exactly one source node and
one sink node. Since every model involving the use of arcs, except those in Section 5.2.7 and Section 5.2.8, always has
32 distinct end-to-end paths as shown in Table 1, having exactly one source node and one sink node allows us to measure
the worst-case compilation times of Tice models without having to measure every possible combination of temporal
constraints that can be applied. To make our point clear, we will consider the design session described in Section 4.2
concerning the Tice model shown in Figure 8. Since the Tice model has 5 source and 2 sink nodes but not every source
node is connected to every sink node, there are at most 5 × 2 = 10 distinct end-to-end delay constraints and 25 × 2 = 64
distinct correlation constraints that can be applied on the model. In the worst case, all of them will be tried one after

22 PRASTOWO ET AL.

TABLE 1 Sets of Tice models to be evaluated (down a column, a dotted cell uses the text of the last non-dotted cell above it).

Evaluator Criterion 1 (k1) Criterion 2 (k2) Criterion 3 (k3) Criterion 4 (k4) Criterion 5 (k5) Criterion 6 (k6)

Section 5.2.1 k1 ∈ {6, 9,… , 27} 0 0 0 0 1
Section 5.2.2 k1 ∈ A k2 ∈ B 32 k4 ∈ C

(k3
2

)

= 496 •
Section 5.2.3 • • • • • •
Section 5.2.4 • • • • • •
Section 5.2.5 27 41 • 21 • k6 ∈ D
Section 5.2.6 • • • • • •
Section 5.2.7 15 + 2 = 17 15 + 7 = 22 7 3 + 2 = 5

(k3
2

)

= 21 4
Section 5.2.8 21 + 2 = 23 28 + 16 = 44 42 3 + 2 = 5

(k3
2

)

= 861 200

A = {7} ∪ {9, 12,… , 27} B = {21} ∪ {23, 26,… , 41} C = {1} ∪ {3, 6,… , 21} D = {10, 15, 20, 40, 45, 75, 100, 1000}

another, and as already shown in Section 4.2, each try will result in several iterations involving the same constraint until the
constraint is respected. Since this section’s objective is to find out how long it would take in the worst-case to perform one
iteration, this section needs to consider only the last of the iterations when the compilation is successful due to its having
the longest compilation time. And, rather than having to determine which of the 10 end-to-end delay and 64 correlation
constraints has the longest compilation time, this section considers the applications of either all of the 10 end-to-end
delay constraints, which are evaluated in Section 5.2.3 and Section 5.2.5, or all of the 64 correlation constraints, which
are evaluated in Section 5.2.4 and Section 5.2.6, by adding two nodes A and B to the Tice model so that A and B become
the only source and sink nodes, respectively, by A’s having outgoing arcs to all of the five existing source nodes and B’s
having incoming arcs from all of the two existing sink nodes. By introducing A and B, applying one end-to-end delay or
one correlation constraint to A and B already overmeasures the compilation time of every individual constraint because
the individual constraint applies to some path that is now the subpath of some path from A to B. The overmeasurement,
however, does not invalidate this section’s objective because every respected constraint is likely to be left in place while
another constraint is added to answer the next design question; this at worst results in the compilation of either all of the
10 end-to-end delay or all of the 64 correlation constraints, resulting in no overmeasurement and achieving this section’s
objective.

• Every model involving the use of multiple periods (i.e., k6 ≠ 1), except those in Section 5.2.7 and Section 5.2.8, are
assigned periods from some set of usable periods. There are eight sets of usable periods, three of which have members
that are different in a logarithmic fashion and five of which have 2i, 3j , and 5k as their members for some positive integers
i, j, and k. Specifically, the three sets are {1, 10}, {1, 10, 100}, and {1, 10, 100, 1000}, resulting in k6 = 10, k6 = 100, and
k6 = 1000, respectively, and the five sets are {2, 3, 5}, {4, 3, 5}, {2, 9, 5}, {8, 3, 5}, and {2, 3, 25}, resulting in k6 = 15,
k6 = 20, k6 = 45, k6 = 40, and k6 = 75, respectively. A Tice model is then assigned multiple periods from one of the
usable-period sets by first ordering the model’s nodes in some order and then visiting the ordered nodes one after another
while assigning any period that either has never been chosen or, if all has ever been chosen, is the least recently chosen
from the usable-period set.

Since the Tice models used in the evaluations have nodes up to 27 nodes, which is almost twice that of ROSACE, 41 arcs at the
maximum, which is almost three times greater than that of ROSACE, 32 distinct end-to-end paths, which is almost five times
greater than that of ROSACE, 496 distinct path pairs that have confluent nodes, which is almost two orders of magnitude larger
than that of ROSACE, and releasing the nodes with the shortest period up to thousand times, which is almost three orders of
magnitude larger than that of ROSACE, the Tice models used in the evaluations should be representative to assess the practical
feasibility of Tice MBD workflow involving Tice programs that are represented by the ROSACE case study and, to some extent,
the WATERS 2017 Industrial Challenge, which has slightly more arcs at 44, a third more distinct end-to-end paths at 42, and
two times more distinct path pairs that have confluent nodes at 861.
The evaluations reported in this section were carried out on a Lenovo E40-80 laptop that came with an Intel Core i3-5010U

processor, which has two physical 64-bit 2.1-GHz cores with two threads per core to have four logical processor cores in total,
and 2 GiB of DDR3 RAM that had subsequently been expanded to 10 GiB by installing an additional 8-GiB memory module.

PRASTOWO ET AL. 23

The computer’s operating system was the desktop version of Ubuntu 16.04.6 whose package manager was used to install the lat-
est GCC from http://ppa.launchpad.net/ubuntu-toolchain-r/test/ubuntu and the latest Clang from http://apt.llvm.org/xenial. The
evaluations measure compilation times by executing GCC/Clang using the Bash shell’s built-in command time so that the sum
of the reported user and system times can be taken as the measured compilation times. To report the compilation times, every
evaluation is repeated ten times so that the average and standard deviation of the measured compilation times can be reported.
The reported compilation times are successful compilation times where the test programs raised no compile-time error. We do
not report the compilation times where the test programs raised compile-time errors because the compilation times were less than
those of the successful ones. Additionally, no swapping of data between the main memory and disk was observed during mea-
surements except in the first out of ten executions of GCC for the evaluation that is reported in Figure 18 at the right-most tick,
which swapped out about 350 MiB from the main memory to disk without swapping them back in (before any evaluation com-
menced, the main memory held about 900MiB, while the disk held no swapped-out memory). The complete evaluation software
is available in directory experiments/v1-performance in the Tice repository.36 The software is to be checked out at commit
c795b273dd to run the second sub-experiment using the latest commit of the test files whose IDs are between 100 and 199, inclu-
sive (i.e., after cloning the Tice repository and entering the cloned directory tree at its root, the whole tree at commit c795b273dd
is first checked out before then checking out only the files that match the pattern experiments/v1-performance/*.txt
at commit master, after which the second sub-experiment can be run on all of the files by the Bash shell command: ./run
--back-end=0,1,2,3:1[0-5]?=1/1000,1[67]?=1/10000 /usr/bin/g++-9 /usr/bin/clang++-9).

5.2 Evaluations
For every evaluation described below, the compilation times are measured on two different cases. In the first case, target hardware
that has no processor core is used as in line 42 of Figure 9 so that the compilers only perform model analyses, neither generating
the code implementing the analyzed models nor integrating the generated code. The compilation times measured in the first
case will therefore show the practical feasibility of using Tice and an off-the-shelf C++ compiler as a modeling tool. In the
second case, target hardware that has four processor cores is used as in lines 44–45 of Figure 9 so that the compilers not only
perform model analyses but also generate the code implementing the analyzed models and integrate the generated code with
the other C++ software components to produce the complete executables. The compilation times measured in the second case
will therefore show the compilation times of Tice as a real-time language. To make the compilation times measured in the two
cases comparable, the macro TICE_V1_NOGEN described in Section 4.2 is not defined so that the compilers process the same
amount of source code as no part is excised by the preprocessors. Beside that, no optimization option (e.g., -O2) is used as
it may incur extra compilation time that has nothing to do with the analysis and the code generation and integration of Tice
models. Additionally, the special file /dev/null is used as the output file because using an actual file will cause the measured
compilation times to include factors that deal with the output process itself that can be improved or made worse by decisions
external to Tice library and off-the-shelf compilers, such as using a fast solid-state drive or slow hard disk drive.
Lastly, to ease presentation, we will call the part of Tice library that analyzes Tice models as Tice front-end and the part of

Tice library that generates code implementing the Tice models and integrates the generated code with other C/C++ software
components as Tice back-end.While the first case of compilations, whose target hardware has no processor core, uses Tice front-
end exclusively, the second case of compilations, whose target hardware has four processor cores, uses both Tice front-end and
Tice back-end because Tice back-end can only work on valid Tice models, requiring Tice front-end to validate the models first.
The evaluation results can then be categorized based on whether they are of interest from the perspective of using an off-the-shelf
C++ compiler as a modeling tool as already demonstrated in Section 4.2. If the evaluation results are of interest, then only Tice
front-end compilation times matter. Otherwise, both Tice front-end and back-end compilation times matter. The categorization
as well as the compilation use-case, the relevant temporal constraint, and the varied criterion of every evaluation result are given
in Table 2 to help locate the evaluation results that are needed to estimate the compilation time of a given Tice model. For
example, considering the ROSACE program shown in Figure 8 whose Tice model has k1 = 15, k2 = 15, k3 = 7, k4 = 3, k5 = 9,
and k6 = 4with k1, k2,… , and k6 being already defined in Table 1, the model’s compilation shown in Figure 10a, which applies
one end-to-end delay constraint and uses GCC 9.1.0 to answer a design question (i.e., only Tice front-end compilation time is
of interest), can be estimated to take at most 3.884 s because, according to Table 2, Figure 19 is the most relevant to estimate
the compilation time needed to answer a design question involving the use of any number of end-to-end delay constraints for
the given criteria k1, k2,⋯ , k6. A similar procedure can be applied on the compilation shown in Figure 11a to estimate that its

http://ppa.launchpad.net/ubuntu-toolchain-r/test/ubuntu
http://apt.llvm.org/xenial

24 PRASTOWO ET AL.

TABLE 2 Evaluation result characteristics (down a column, a dotted cell uses the text of the last non-dotted cell above it).

Evaluation
Result

Relevant if Using
C++ Compiler as
Modeling Tool?

Compilation Use-Case Temporal Constraint Varied Criterion
(see Table 1)

Figure 13 No Independent periodic real-time tasks None Criterion 1
Figure 14 • LET computation & communication • Criterion 2
Figure 15 Yes • End-to-end delay Criterion 4
Figure 16 • • Correlation •
Figure 17 • • End-to-end delay Criterion 6
Figure 18 • • Correlation •
Figure 19 • • None/either/both Temporal constraints
Figure 21 • • • •

 1.5

 5.5

 6 9 12 15 18 21 24 27

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Node count

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

2.498(.083)

2.755(.008)

3.043(.009)

3.337(.007)

3.763(.007)

4.101(.016)

4.425(.018)

4.881(.219)

1.940(.007) 1.986(.005) 2.043(.004) 2.118(.049) 2.169(.006) 2.250(.003)
2.347(.028)

2.461(.038)

 1.5

 5.5

 6 9 12 15 18 21 24 27

Node count

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

3.287(.025)

3.507(.031)

3.727(.017)

3.951(.022)

4.200(.023)

4.474(.030)

4.738(.023)

5.043(.020)

2.928(.014) 2.984(.017) 3.062(.020) 3.144(.012)
3.229(.021)

3.338(.022)
3.443(.019)

3.570(.018)

FIGURE 13 Compilation times of Tice models that have only isolated nodes.

compilation time is at most 4.312 s. If the Tice model uses both end-to-end delay and correlation constraints in any number,
then Figure 19 estimates that the compilation time is at most 4.439 s.

5.2.1 Isolated Nodes Only
In this section, we report the compilation times of Tice models whose DAGs have only isolated nodes (i.e., no arcs and no
temporal constraints). While Tice programs expressing only isolated nodes might not be interesting from the perspective of a
modeling tool, they are useful from the perspective of a real-time language to implement periodic real-time tasks. As shown in
Figure 13, we evaluated the compilation times of GCC and Clang when they compiled Tice models whose numbers of isolated
nodes are between 6 and 27, inclusive, in an increment of 3 nodes, the number of which is chosen to have eight data points to
make their plotted graph legible. As Tice programs expressing only isolated nodes are likely more useful to produce executables
than to analyze Tice models, the focus in Figure 13 should be on the compilation times measured in the second case, which
executes both Tice front-end and Tice back-end.
It can be concluded from Figure 13 that the compilation times of Tice programs expressing independent periodic real-time

tasks would be practically reasonable as the largest Tice model with 27 of such tasks could be compiled into an executable
virtually under 5 seconds. Other than that, GCC produced executables faster than Clang for smaller Tice programs. Hence, it
seems that GCC is specially tuned to compile small C++ programs in general.

5.2.2 Data Flows without Temporal Constraints
In this section, we report the compilation times of Tice models whose DAGs have arcs. As in the preceding section, while Tice
programs expressing data flows are indeed interesting from the perspective of a real-time language, it might not be the case from

PRASTOWO ET AL. 25

 1.5

 8

 20 23 26 29 32 35 38 41

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Arc count

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

3.221(.008)

3.682(.012)

4.161(.006)

4.692(.013)

5.283(.015)

5.962(.013)

6.641(.019)

7.404(.111)

2.333(.006)
2.454(.006)

2.648(.006)
2.887(.011)

3.301(.012)
3.614(.012)

3.946(.009)

4.388(.020)

 1.5

 8

 20 23 26 29 32 35 38 41

Arc count

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

4.031(.019)
4.315(.017)

4.776(.030)

5.305(.034)

5.889(.042)

6.491(.044)

7.135(.042)

7.873(.037)

3.403(.018)
3.563(.020)

3.828(.023)
4.133(.030)

4.490(.025)

4.932(.051)

5.312(.053)

5.812(.025)

FIGURE 14 Compilation times of Tice models that have arcs but no temporal constraint.

 1.5

 9

 0 3 6 9 12 15 18 21

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Length of the shortest constrained end-to-end path

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

3.466(.011)

3.875(.020)

4.473(.010)

5.174(.011)

5.938(.016)

6.822(.037)

7.766(.012)

8.806(.010)

2.461(.006)
2.650(.005)

3.101(.005)

3.507(.012)

3.964(.003)

4.478(.022)

5.046(.011)

5.717(.012)

 1.5

 9

 0 3 6 9 12 15 18 21

Length of the shortest constrained end-to-end path

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

4.141(.036)
4.497(.034)

5.056(.029)

5.654(.039)

6.285(.019)

7.015(.037)

7.779(.050)

8.597(.043)

3.536(.022)

3.750(.024)
4.097(.024)

4.493(.032)

4.950(.030)

5.449(.040)

5.951(.041)

6.580(.028)

FIGURE 15 Compilation times of Tice models that have exactly one end-to-end delay constraint.

the perspective of a modeling tool because nothing is asked about the data flows. Hence, as before, the focus in Figure 14 should
be on the compilation times measured in the second case, which executes both Tice front-end and Tice back-end.
The Tice models evaluated in this section were constructed in such a way so that every Tice model has exactly one source

node, one sink node, 32 distinct end-to-end paths, and 496 path pairs having confluent nodes but a distinct shortest end-to-end
path length that is varied from one model to the next starting from 1 and then continuing with 3 up to 21, inclusive, in a 3-arc
increment, which also varies the number of nodes starting from 7 and then continuing with 9 up to 27, inclusive, in a 3-node
increment. Therefore, the Tice models have between 21 and 41 arcs, inclusive, specifically one Tice model with 21 arcs and
seven Tice models with 23 up to 41 arcs in a 3-arc increment, respectively.
It can be concluded from Figure 14 that the compilation times of Tice programs expressing real-time data-flow LET-based

processing would be practically reasonable as the largest Tice model with 41 arcs could be compiled into an executable under
8 seconds. As before, GCC produced executables faster than Clang for smaller Tice programs.

5.2.3 One Last-to-First End-to-End Delay Constraint
In this section, we report the compilation times of Tice models that have exactly one last-to-first end-to-end delay constraint.
In this report, the Tice models constructed for the previous section’s report were reused by attaching one end-to-end delay
constraint to the only available source and sink nodes. In contrast to the two preceding sections, without losing their appeal
from the perspective of a real-time language, the Tice programs are now interesting from the perspective of a modeling tool as
demonstrated in Section 4.2. Hence, the focus in Figure 15 should be on the compilation times measured in the first case, which
exclusively executes Tice front-end.
As explained in the previous section, the Tice models have 21 arcs at the minimum and a fixed number of end-to-end paths,

namely 32 paths. While the number of end-to-end paths is almost five times greater than that of the ROSACE case study, the
number is the maximum number of end-to-end paths attainable with 21 arcs without forming a cycle so that different data-flow

26 PRASTOWO ET AL.

 0

 40

 0 3 6 9 12 15 18 21

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Length of the shortest constrained end-to-end path

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

6.318(.021)
8.111(.078)

11.148(.019)

14.780(.030)

19.045(.045)

24.418(.151)

31.308(.120)

38.156(.098)

5.435(.012)
7.141(.250)

9.830(.043)

13.133(.093)

17.034(.082)

21.357(.046)

26.417(.047)

32.044(.106)

 0

 40

 0 3 6 9 12 15 18 21

Length of the shortest constrained end-to-end path

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

7.077(.059)
8.553(.085)

11.088(.091)

13.913(.135)

16.942(.181)

20.371(.164)

24.178(.140)
28.277(.287)

6.411(.056)
7.856(.070)

10.138(.113)

12.873(.109)

15.629(.092)

18.870(.216)

22.264(.188)

26.429(.340)

FIGURE 16 Compilation times of Tice models that have exactly one correlation constraint.

configurations could be tried iteratively, the worst of which we have anticipated to have 32 end-to-end paths. In Figure 15, the
length of the shortest end-to-end path is varied because, based on Figure 7 and (16), the analysis of an end-to-end delay constraint
should grow proportional to the length of a constrained end-to-end path.
It can be concluded from Figure 15 that the analyses of this kind of Tice models would be practically reasonable as the largest

Tice model with 32 end-to-end paths of average length 21 arcs could be analyzed under 7 seconds. While 7 seconds might seem
a bit too long for MATLAB/SIMULINK users, recall that it is the anticipated worst-case time needed to analyze a Tice model
during modeling; the usual analysis time of the cases that are represented by the ROSACE case study could be around 4 seconds
as shown in Figure 19. Furthermore, as the demand of using off-the-shelf C++ compilers as modeling tools grows,37,38 the usual
analysis time would get even shorter, matching the usual time experienced by MATLAB/SIMULINK users. Additionally, the code
generation and integration of Tice models would also be practically reasonable as the largest Tice model could be compiled into
an executable under 9 seconds. As before, GCC produced executables faster than Clang for smaller Tice programs. However,
GCC was consistently faster than Clang when the compilers were used as modeling tools.

5.2.4 One Correlation Constraint
In this section, we report the compilation times of Tice models that have exactly one correlation constraint. In this report,
the Tice models constructed for the previous section’s report were reused by replacing the end-to-end delay constraint with a
correlation constraint. As in the previous section, the Tice programs are interesting from both the perspectives of a modeling
tool and a real-time language. As before, the focus in Figure 16 should be on the compilation times measured in the first case,
which exclusively executes Tice front-end.
As explained in the previous section, the Tice models have 21 arcs at the minimum, 32 possible end-to-end paths, and as

explained in Section 5.2.2, 496 path pairs that have confluent nodes. While the number of path pairs is more than an order of
magnitude greater than that of the ROSACE case study, which has 9 path pairs, as in the previous section, the use-case of Tice
and an off-the-shelf C++ compiler as a modeling tool requires us to anticipate the worst possible data-flow configuration asked.
As in the preceding section, it can be concluded from Figure 16 that the analyses of this kind of Tice models would still be

practically reasonable as a modeling tool because Figure 16 reports the anticipated worst cases. The usual cases represented by
the ROSACE case study could be an order of magnitude faster around 4 seconds as shown in Figure 19. Furthermore, Figure 16
confirms the observations made in the preceding sections: GCC is optimized to compile small C++ programs. Additionally,
Figure 16 shows that Clang is faster than GCC at analyzing large Ticemodels. Lastly, the times needed to produce the executables
are still practically reasonable as most of the compilation times were spent at analyzing Tice models. The difference between the
upper and lower curves shows that the time needed to generate the code implementing the models and to integrate the generated
code to produce the executables were under 9 seconds.

5.2.5 One Last-to-First End-to-End Delay Constraint and Multiple Periods
In this section, eight Tice models were constructed in the same way the largest Tice model in Section 5.2.3 was constructed. The
nodes of the Tice models, however, were assigned different periods as described in Section 5.1. Specifically, each of the eight
Tice models has its nodes assigned periods from exactly one of the eight sets of usable periods in the manner already described

PRASTOWO ET AL. 27

 0

 90

{1,10}

(10)

{2,3,5}

(15)

{22,3,5}

(20)

{23,3,5}

(40)

{2,32,5}

(45)

{2,3,52}

(75)

{1,…,102}

(100)

{1,…,103}

(1000)

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Usable-period set and most-frequent release count at hyperperiod (parenthesized)

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

9.555(.028) 9.554(.025) 9.726(.020) 10.272(.044) 10.739(.048) 12.353(.021)
14.105(.045)

84.411(.590)

6.414(.028) 6.429(.020) 6.603(.013) 7.111(.015) 7.554(.041) 9.123(.070)
10.890(.052)

79.014(.203)

 0

 90

{1,10}

(10)

{2,3,5}

(15)

{22,3,5}

(20)

{23,3,5}

(40)

{2,32,5}

(45)

{2,3,52}

(75)

{1,…,102}

(100)

{1,…,103}

(1000)

Usable-period set and most-frequent release count at hyperperiod (parenthesized)

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

9.492(.056) 9.535(.070) 9.788(.064) 10.371(.081) 10.868(.064)
12.858(.095) 14.438(.117)

7.430(.077) 7.464(.058) 7.741(.048) 8.289(.058) 8.750(.037)
10.804(.100) 12.386(.112)

FIGURE 17 Compilation times of multi-periodic Tice models with exactly one end-to-end delay constraint.

in Section 5.1. While the Tice programs are interesting from both the perspectives of a modeling tool and a real-time language,
contrary to the previous sections, the focus in Figure 17 should be on the compilation times measured in both the first and the
second cases because the node periods affect both the analysis effort and the code generation and integration effort.
It can be concluded from Figure 17 that the analyses of multi-periodic Tice models would still be practically reasonable

because Figure 17 reports the anticipated worst cases. This means that for the cases represented by the ROSACE case study,
the required analysis time could be around 4 seconds as shown in Figure 19 because Figure 17 reports the largest Tice model
evaluated in Figure 15. Beside that, Figure 17 shows that the analysis times grow proportional to the most-frequent release count
at hyperperiod. Furthermore, Figure 17 shows that assigning different periods to Tice nodes has no visible impact on the time
needed to produce the executables as the difference between the upper and lower curves stays virtually constant. Lastly, in this
multi-periodic evaluations, GCC performed better than Clang. First, GCC compiled faster than Clang as shown in Figure 17.
Secondly, GCC could compile the largest multi-periodic Tice model successfully, while Clang crashed with a segmentation fault
error. Consequently, the right part of Figure 17 shows no data for the right-most tick.

5.2.6 One Correlation Constraint and Multiple Periods
This section repeats the evaluations reported in the previous section but constructing the eight Tice models in the same way
the largest Tice model in Section 5.2.4 was constructed as well as replacing the end-to-end delay constraints with correlation
constraints. As before, the Tice programs are interesting from both the perspectives of a modeling tool and a real-time language,
and the focus in Figure 18 should be on the compilation times measured in both the first and the second cases because the node
periods affect both the analysis effort and the code generation and integration effort.
It can be concluded from Figure 18 that the analyses of this kind of multi-periodic Tice models would be practically reasonable

despite the large compilation times reported in Figure 18. As already explained in Section 5.2.5 and Section 5.2.4, based on the
ROSACE case study and keeping in mind that Figure 18 reports the largest Tice model evaluated in Figure 16, the compilation
times of the cases represented by the ROSACE case study could be around 4 seconds as shown in Figure 19. As concluded
in the preceding section, Figure 18 shows that the most-frequent release count at hyperperiod is strongly correlated with the
analysis times but not with the executable-producing times. However, while Clang crashed with a segmentation fault error when
analyzing the largest multi-periodic Tice model reported in the preceding section, Clang successfully compiled the model when
the end-to-end delay constraint was replaced with a correlation constraint. Furthermore, Clang compiled significantly faster than
GCC. Hence, Clang is better suited than GCC to analyze multi-periodic Tice models with correlation constraints that involve a
large number of confluent path pairs. On the other hand, based on the previous section’s conclusion, GCC is better suited than
Clang to analyze multi-periodic Tice models with end-to-end delay constraints that involve a large number of long end-to-end
paths.

28 PRASTOWO ET AL.

 20

 100

{1,10}

(10)

{2,3,5}

(15)

{22,3,5}

(20)

{23,3,5}

(40)

{2,32,5}

(45)

{2,3,52}

(75)

{1,…,102}

(100)

{1,…,103}

(1000)

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Usable-period set and most-frequent release count at hyperperiod (parenthesized)

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

40.783(.184)41.064(.336) 41.539(.281)42.496(.231)

46.633(.259)

52.016(.196)

60.699(.306)

93.402(.303)

34.656(.121) 34.912(.155) 35.201(.114) 36.491(.191)

40.163(.127)

45.543(.166)

53.996(.143)

85.619(.419)

 20

 100

{1,10}

(10)

{2,3,5}

(15)

{22,3,5}

(20)

{23,3,5}

(40)

{2,32,5}

(45)

{2,3,52}

(75)

{1,…,102}

(100)

{1,…,103}

(1000)

Usable-period set and most-frequent release count at hyperperiod (parenthesized)

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

31.217(.256)31.739(.296) 31.888(.391)32.919(.348)

37.957(.418)

43.831(.279)

53.179(.434)

70.855(.917)

29.156(.228) 29.442(.296) 29.882(.331) 31.078(.204)

35.671(.351)

41.385(.306)

50.755(.434)

68.724(.747)

FIGURE 18 Compilation times of multi-periodic Tice models with exactly one correlation constraint.

5.2.7 ROSACE (Multiple Periods) with None/Either/Both Constraints
While the preceding evaluations have focused on evaluating the worst-case compilation scenarios for the cases that are repre-
sented by the ROSACE case study, this section focuses on evaluating the worst-case compilation scenarios of the ROSACE case
study itself, specifically the compilations of the Tice program shown in Figure 8. To do so, as already explained in Section 5.1,
the Tice models used in this evaluation is the Tice model shown in Figure 8 that is enlarged by adding two new nodes that
become the only source and sink nodes on which the temporal constraints are applied. Consequently, beside adding two nodes
to the Tice model shown in Figure 8, the evaluated Tice models also add seven arcs, lengthen the shortest end-to-end path by
two arcs, and enlarge the number of distinct end-to-end path pairs that have confluent nodes by twelve path pairs. However, by
assigning a period of 5 ms to the two new nodes, the evaluated Tice models keep the same number of times the non-isolated
nodes with the shortest period is released in the hyperperiod of all non-isolated nodes.
It can be concluded from Figure 19 that the analyses of Tice programs whose Criterion 1 up to 6 as shown in Table 1 are

very close to the criteria of the ROSACE Tice program shown in Figure 8 would be very reasonable in practice. Furthermore,
the analyses of last-to-first end-to-end delay constraints is significantly less costly than the analyses of correlation constraints
(3.884 − 3.780 = 0.104 s vs. 4.312 − 3.780 = 0.532 s for GCC and 4.667 − 4.561 = 0.106 s vs. 5.113 − 4.561 = 0.552 s for
Clang), which is not surprising because as described in Section 3.2.2 the analyses of end-to-end delay constraints consider only
one end-to-end path at a time while the analyses of correlation constraints consider not only two end-to-end paths but also each
of their confluent nodes at a time. Furthermore, using both end-to-end delay and correlation constraints result in compilation
times that are longer by the sum of the time taken to analyze each kind of the constraints (3.780 + 0.104 + 0.532 = 4.416 s,
which is almost 4.439 s reported for GCC, and 4.561+0.106+0.552 = 5.219 s, which is slightly more than 5.204 s reported for
Clang). That is, the two kinds of the constraints are computed by Tice library independently. Additionally, as the gap between
the upper and lower curves stays virtually the same but shrinks when both kinds of constraints are used together, it shows that
Tice library indeed consists of two independent parts: Tice front-end, which analyzes a given Tice model, and Tice back-end,
which implements a valid Tice model. Lastly, since the upper curves of both GCC and Clang plots are virtually the same in
their shapes and locations but GCC’s lower curve is even lower than Clang’s lower curve, it means that GCC’s C++ front-end is
likely about 20% faster than Clang’s in answering various design questions asked on the Tice program shown in Figure 8.

5.2.8 WATERS 2017 (Multiple Periods) with None/Either/Both Constraints
Considering that the authors of the ROSACE case study in proposing a framework for automatic multicore code generation39

measured the processing time of the framework on not only the ROSACE case study in the aviation domain but also the
WATERS 2017 Industrial Challenge in the automotive domain,40 this section also evaluates theworst-case compilation scenarios
of the WATERS 2017 Industrial Challenge.
Unlike the ROSACE case study that comes complete with the source of the C functions, the WATERS 2017 Industrial Chal-

lenge does not comewith the source of the AUTOSAR runnables, which are analogous to C/C++ functions. Instead, the challenge

PRASTOWO ET AL. 29

 3.5

 7.5

None End-to-end delay Correlation Both

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Temporal constraint

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

5.813(.097)
5.971(.123)

6.426(.130) 6.433(.146)

3.780(.075)
3.884(.066)

4.312(.133)
4.439(.075)

 3.5

 7.5

None End-to-end delay Correlation Both

Temporal constraint

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

5.861(.086)
5.978(.092)

6.475(.084) 6.440(.104)

4.561(.090)
4.667(.048)

5.113(.103)
5.204(.080)

FIGURE 19 Compilation times of multi-periodic ROSACE Tice models with different temporal constraints.

ISR_10

T_2ms

T_50ms T_20ms

ISR_5

T_1ms

Angle_Sync

ISR_6

T_10ms

T_1000msT_200ms

ISR_4

T_5ms

ISR_8 ISR_7

T_100ms

ISR_11 ISR_9ISR_1 ISR_2 ISR_3

FIGURE 20 The result of running Algorithm 1 on the cyclic graph presented by Table 3.

only describes the software architecture, namely the runnables, their directed communication, and more importantly their group-
ing into tasks that are required to communicate using time-triggered LET and scheduled using a fixed-priority scheduling policy
on a multicore processor. The architecture description is given in a zipped XML file that can be downloaded by first going to
http://waters2017.inria.fr/program/ and then selecting the link titled “Presentation of the 2017 Industrial Challenge” before lastly
downloading the file by the link titled “Bosch_ChallengeModel_w_LabelStats_fixedLabelMapping_App4mc_v072.zip”. Since
the communication among runnables in the same task is required to use the semantics of AUTOSAR implicit communication,
which is different from the semantics of time-triggered LET communication, while the communication among runnables in two
different tasks is required to use the semantics of time-triggered LET,40 the Tice models evaluated in this section use only the
tasks of the runnables as their Tice nodes.
Analysis of the XML file shows that there are 21 tasks, which are taken as distinct Tice nodes. While 11 out of the 21 tasks

are source nodes because their runnables do not read data from the runnables of other tasks, the communication among the
remaining 10 nodes is not acyclic. This means that, while there are 81 distinct arcs that include the 11 arcs associated with the 11
source nodes as shown in Table 3, some of the 70 arcs need to be removed to have a DAG and consequently a valid Tice model.
To do so, Algorithm 1 is run on the cyclic graph to obtain a DAG with 28 arcs, 5 sink nodes, the longest end-to-end paths being
3-arc long, and 42 distinct end-to-end paths as shown in Figure 20. Therefore, in comparison with the DAG of ROSACE shown
in Figure 8, the DAG of ROSACE is taller by one arc in terms of the longest end-to-end path, but the DAG of WATERS 2017
has more branches and confluent nodes. Furthermore, WATERS 2017 has a greater number of distinct periods assigned to the
DAG nodes.
Following the construction strategy described in Section 5.1 to evaluate the worst-case compilation scenarios, as shown in

Table 1, with respect to the DAG shown in Figure 20, the Tice models evaluated in this section has 2 more nodes (the single
source and sink nodes) with a period of 1 ms, 16 more arcs (the arcs from the new single source node to the 11 former source
nodes and the arcs from the 5 former sink nodes to the new single sink node), the longest end-to-end paths being longer by 2
arcs, and the number of times the non-isolated nodes with the shortest period is released in the hyperperiod of all non-isolated
nodes is capped at 200 times so as to avoid any swap to disk. To cap Criterion 6 shown in Table 1 at 200 times, the periods of the
first five tasks shown in Table 3 are set to 1 ms, the sixth and eighth to 5 ms, the ninth up to the eleventh to 10 ms, Angle_Sync

http://waters2017.inria.fr/program/

30 PRASTOWO ET AL.

TABLE 3 The 81 arcs found in the WATERS 2017 Industrial Challenge (tasks are ordered by their priorities, and task periods
are either stated in the names or in parentheses with the 11 source nodes being given their minimum interarrival times).

From \ To T_1ms Angle_Sync T_2ms T_5ms T_10ms T_20ms T_50ms T_100ms T_200ms T_1000ms Out-Degree

1) ISR_10 (0.7 ms) • 1

2) ISR_5 (0.9 ms) • 1

3) ISR_6 (1.1 ms) • 1

4) ISR_4 (1.5 ms) • 1

5) ISR_8 (1.7 ms) • 1

6) ISR_7 (4.9 ms) • 1

7) ISR_11 (5 ms) • 1

8) ISR_9 (6 ms) • 1

9) ISR_1 (9.5 ms) • 1

10) ISR_2 (9.5 ms) • 1

11) ISR_3 (9.5 ms) • 1

12) T_1ms • • • • • 5

13) Angle_Sync (6.66 ms) • • • • • • • • • 9

14) T_2ms • • • • • 5

15) T_5ms • • • • • 5

16) T_10ms • • • • • • • • • 9

17) T_20ms • • • • • • • 7

18) T_50ms • • • • • • • 7

19) T_100ms • • • • • • • • • 9

20) T_200ms • • • • • • • 7

21) T_1000ms • • • • • • • 7

In-Degree 11 7 4 5 14 9 9 10 6 6 Total: 81 arcs

Algorithm 1 Turning the cyclic graph of WATERS 2017 into a DAG to make for a valid Tice model.
E ← ∅,Vc ← ∅
for v ∈ V do

if v. parents = ∅ then
Vc ← Vc ∪ {v}

end if
end for
while Vc ≠ ∅ do

Vn ← ∅
for vc ∈ Vc do

for v′c ∈ vc . children do
E ← E ∪

{(

vc , v′c
)}

,Vn ← Vn ∪
{

v′c
}

end for
end for
for vn ∈ Vn do

for v′n ∈ Vn . parents do
v′n . children ← v′n . children ⧵

{

vn
}

end for
end for
Vc ← Vn

end while

PRASTOWO ET AL. 31

 0

 120

None End-to-end delay Correlation Both

C
o

m
p

il
at

io
n

 t
im

e
av

er
ag

e
an

d
 s

ta
n

d
ar

d

d
ev

ia
ti

o
n

 (
p

ar
en

th
es

iz
ed

)
in

 s
ec

o
n

d
s

Temporal constraint

Tice front-end and back-end executed by GCC

Tice front-end executed by GCC

10.576(.204)

6.795(.057)

89.691(1.108) 90.582(.344)

4.727(.052)
8.479(.255)

85.294(1.127) 87.313(.962)

 0

 120

None End-to-end delay Correlation Both

Temporal constraint

Tice front-end and back-end executed by Clang

Tice front-end executed by Clang

10.340(.079)
6.705(.032)

83.403(.838)
86.552(.859)

5.500(.033)
9.088(.084)

82.126(1.059) 85.289(.853)

FIGURE 21 Compilation times of multi-periodic WATERS 2017 Tice models with different temporal constraints.

to 5 ms, and T_1000ms is set to 200 ms. The measured compilation times are then shown in Figure 21 and analyzed below (note
that every subsection in Section 5.2 measures the worst-cast scenarios as explained in Section 5.1):

• When there is no temporal constraint, Figure 21 agrees with Figure 14, which also shows the evaluations of Tice models
with arcs but no temporal constraints, and therefore, the same analyses and conclusions apply, mainly that the compilation
times of Tice models similar to the ones evaluated in this section would be practically reasonable.

• When there is any number of last-to-first end-to-end delay constraints, Figure 21 when compared with Figure 15 shows
that the application of any number of last-to-first end-to-end delay constraints in Tice models that are similar to the ones
evaluated in this section would still be practically reasonable because, despite Criterion 6 of the Tice models evaluated in
this section being 200, their compilation times were just about 3 seconds longer than those shown in Figure 15 and about
3 seconds shorter than those shown in Figure 17.

• When there is any number of correlation constraints, Figure 21 agrees with Figure 18, which also shows the evaluations of
multi-periodic Tice models with correlation constraints. In particular, Figure 21 shows compilation times that are longer
than those predicted by Figure 18 because, despite Criterion 6 being 200 for the evaluations in Figure 21, the number of
distinct path pairs (i.e., Criterion 5) evaluated in Figure 21 is about 74% larger than that evaluated in Figure 18. While the
compilation times shown in Figure 21 are not practical to use off-the-shelf C++ compilers as modeling tools to analyze the
correlation constraints of Tice models that are similar to the ones evaluated in this section, the WATERS 2017 Industrial
Challenge gives the hint that in the application domain of the challenge, which is the automotive domain, correlation
constraints would not be used as often as last-to-first end-to-end delay constraints in practice. In other words, Figure 21
shows the worst-case compilation scenarios in the automotive domain with respect to the use of correlation constraints
in Tice models where the usual cases, which mostly use end-to-end delay constraints, could have practically reasonable
compilation times.

• When both last-to-first end-to-end delay and correlation constraints are present in any number, Figure 21 agrees with
Figure 19 in showing that the analyses of last-to-first end-to-end delay constraints is significantly less costly than the
analyses of correlation constraints.

To conclude, while Figure 21 has been analyzed with the conclusions that the compilation times of Ticemodels that are similar
to the ones evaluated in this section would be reasonable in practice, the Tice models evaluated in Figure 21 have their Criterion 6
capped at 200 times by modifying the actual periods and interarrival times actually used in the WATERS 2017 Industrial
Challenge, which are shown in Table 3. In other words, the actual periods and interarrival times used in the WATERS 2017
Industrial Challenge have shown that the internals of Tice library41 should be further improved, in particular by using different
techniques to decrease its memory consumptionwhen analyzing temporal constraints, for example, by implementing the analyses
using constexpr-function iterations instead of class-template recursions.

32 PRASTOWO ET AL.

6 THE GENERATION OF CODE TO IMPLEMENT TICE PROGRAMS

Once the Tice model expressed in a Tice program has been validated by an off-the-shelf C++ compiler as directed by Tice
library, which is the C++ active library that implements Tice, Tice library will direct the C++ compiler to generate the code that
implements the model according to the MoCC in Section 3.2.1 on the specified execution platform. The execution platform as
described in Section 3.1 is specified by an instance of template HW that is given as the first parameter of the Program instance.
In case the specified execution platform is the special platform that has no processor, no implementing code will be generated.

Otherwise, the implementing code will be generated by first mapping the expressed set of nodes to a set of RT (real-time)
tasksets and their scheduling and partitioning policies. If the mapping fails due to not finding an RT taskset or a scheduling
or partitioning policy to realize the expressed model’s MoCC on the execution platform, Tice library will raise a compile-time
error. Otherwise, Tice library will generate the code that implements the RT taskset and its scheduling and partitioning policies
for the execution platform.
While Tice library can in fact generate code for various execution platforms, which can be selected by defining some pre-

processing macro, currently Tice library generates code only for an execution platform that provides API for pthreads (i.e.,
POSIX threads)10 and their scheduling using the SCHED_DEADLINE policy,42 which uses the gEDF (global earliest-deadline first)
scheduling algorithm. Since the communication code generated by Tice already implements the LET communication seman-
tics as explained in Section 6.2, other than the aforementioned platform (e.g., a GNU/Linux operating system), no additional
middleware layer is needed to enforce the LET communication semantics.

6.1 The Generated Computation Code
While Tice library can indeed use various strategies to map the expressed nodes to some suitable RT taskset and scheduling and
partitioning policies (e.g., by requiring more information to be specified on the parameter list of the HW instance beside processor
core IDs), currently Tice library maps every node in the expressed Tice model to a unique RT task to be scheduled using gEDF,
which does not partition the resulting RT taskset.43
The mapping makes every member � of the constructed RT taskset Γ to have a period P� and WCET C� that are equal to

those of the corresponding node. And, letting k be the number of core IDs specified using template Core_ids, the mapping
is successful if and only if: (1) the utilization of the RT taskset (i.e.,

∑

�∈Γ C�∕P�) is not greater than k2∕(2k − 1), and (2) the
utilization of every member of the RT taskset (i.e., C�∕P�) is not greater than k∕(2k−1), both of which are the tightest sufficient
conditions for gEDF schedulability.43 A compile-time error will be raised if the mapping fails; otherwise, every RT task is
implemented as a C++ thread as shown in lines 2537–2543 of Figure 22.
Referring to Figure 22, the implementing threads are scheduled using the SCHED_DEADLINE policy with the pthread’s schedul-

ing attributes sched_runtime, sched_deadline, and sched_period being set to the RT task’s WCET, the RT task’s period,
and zero to mean being equal to the preceding attribute,44 respectively, as shown in lines 2472–2496 (the C++ thread standard
library provides no API to configure the C++ thread scheduling policy, and therefore, Tice library directly uses the underlying
platform API). Each of the threads performs a loop that invokes the C++ function that is assigned to the node that the thread
implements. The thread invokes the C++ function once in every cycle of the loop, which starts only after every thread is ready
to start (lines 2522–2527), which can be graciously stopped (the loop condition in lines 2509–2520), and which invokes the
C++ function by invoking function update_channels (the loop body in lines 2509–2520) whose definition is shown in either
lines 2408–2419 of Figure 23a if the implemented node is a producer node or lines 2434–2440 of Figure 23b otherwise (the
C++ function is invoked through the pointer arg__dict_Entry__of__Node__node::value::fn_info::fn_ptr::value).

6.2 The Generated Communication Code
Beside generating the computation code, Tice library also generates the code that implements the communication of every
producer-consumer pair expressed in the Tice model. Figure 23 shows the communication code that Tice library generates
for every node-implementing thread (the generated class Periodic_rt_task__base_class shown in Figure 22 is inherited
by the generated class Periodic_rt_task as shown in lines 2390–2393 of Figure 23a and lines 2431–2433 of Figure 23b).
Figure 23a and Figure 23b differ only in their template specializations (template parameter pack args__write_to_arc is empty
in lines 2385–2389 of Figure 23a but non-empty in lines 2428–2430 of Figure 23b) and the need to write to one or more buffers

PRASTOWO ET AL. 33

Lines 21–22

Lines 29–34

Lines 2451–2454

Lines 2472–2496

Lines 2509–2520

Lines 2537–2543

Line 2551

#include <thread>
#include <chrono>

//\begin{platform-specific header files}
#include <sched.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <linux/sched.h>
//\end{platform-specific header files}

template<prms_2B(I, _, R(typename... args__Channel__channel_list), R(typename... args__write_to_arc))>
struct Periodic_rt_task__base_class<args_2B(I, _, R(tuple::construct<I, args__Channel__channel_list...>),
 R(tuple::construct<I, args__write_to_arc...>))>
{

 inline long setup_scheduler()
 {
 //\begin{platform-specific region}
 struct {
 uint32_t size;
 uint32_t sched_policy;
 uint64_t sched_flags;
 int32_t sched_nice;
 uint32_t sched_priority;
 uint64_t sched_runtime;
 uint64_t sched_deadline;
 uint64_t sched_period;
 } scheduling_attributes;
 memset(&scheduling_attributes, 0, sizeof(scheduling_attributes));
 scheduling_attributes.size = sizeof(scheduling_attributes);
 scheduling_attributes.sched_policy = SCHED_DEADLINE;
 scheduling_attributes.sched_runtime
 = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::duration<int, H(typename arg__dict_Entry__of__Node__node::value::
 wcet)>(1)).count();
 scheduling_attributes.sched_deadline
 = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::duration<int, H(typename arg__dict_Entry__of__Node__node::value::
 period)>(1)).count();
 return syscall(SYS_sched_setattr, 0, &scheduling_attributes, 0) ? errno : 0;
 //\end{platform-specific region}
 }

 inline void run_periodically_until_stopped()
 {
 typedef std::chrono::high_resolution_clock::duration Delta;
 const Delta period = std::chrono::duration_cast<Delta>(std::chrono::duration<H(int,
 typename
 arg__dict_Entry__of__Node__node::value::period)>(1));
 std::chrono::time_point<std::chrono::high_resolution_clock> release_time(std::chrono::high_resolution_clock::now());
 while (std::atomic_load_explicit(&communication_data.not_stopped, std::memory_order::memory_order_relaxed)) {
 update_channels();
 std::this_thread::sleep_until(release_time += period);
 }
 }

 void run_periodic_task()
 {
 if (wait_for_start_signal(setup_scheduler())) {
 run_periodically_until_stopped();
 }
 }

 void run()
 {
 task = std::thread(&Periodic_rt_task__base_class<args_2B(I, _,
 R(tuple::construct<I, args__Channel__channel_list...>),
 R(tuple::construct<I, args__write_to_arc...>))>::run_periodic_task,
 this);
 }

};

Lines 2522–2527

FIGURE 22 Computation code generator in file internals/v1/v1_internals_program.hpp at commit 28fe6ac76a.36

(function update_channel is defined and invoked in lines 2394–2406 and lines 2408–2419 of Figure 23a, respectively, but
neither defined nor invoked in Figure 23b).
While Tice library can choose from many different options, currently Tice library generates a distinct buffer object for every

arc expressed in the model by assuming that the arc’s producer and consumer are on distinct threads and associates every buffer
object with exactly one producer and one consumer threads. Every buffer object has two public member functions: get_-
buffer_to_write, which we call writing function, to write to the buffer and get_buffer_to_read, which we call reading
function, to read from the buffer. The writing and reading functions return a pointer and a reference to a buffer whose type is
the arc’s channel type, respectively. While the writing function is invoked only by the producer thread (the last parameter of the
invocation of update_channel in lines 2408–2419 of Figure 23a), the reading function is invoked by both the producer and
the consumer threads (the first statement in lines 2408–2419 of Figure 23a and in lines 2434–2440 of Figure 23b). In each of
their periods, the producer and consumer threads invoke the writing and reading functions only once, respectively, as already
shown in lines 2509–2520 of Figure 22.

34 PRASTOWO ET AL.

Lines 2385–2389

template<prms_2A(I, _, R(typename... args__Channel__channel_list),
 R(typename... args__write_to_arc, v1::array::Idx... args__read_from_idx))>
struct Periodic_rt_task<args_2A(I, _, R(tuple::construct<I, args__Channel__channel_list...>),
 R(pair::construct<H(I, tuple::construct<I, args__write_to_arc...>,
 Array_idx_list<I, args__read_from_idx...>)>))> :

#define base_class Periodic_rt_task__base_class<args_2B(I, _, R(tuple::construct<I, args__Channel__channel_list...>), \
 R(tuple::construct<I, args__write_to_arc...>))>
 base_class
{

private:
 template<typename arg__return_type_, typename arg__channel_type_>
 inline void update_channel(const arg__return_type_ &output, arg__channel_type_ *channel) {
 if (channel) {
 *channel = output;
 }
 }

 template<typename arg__return_type_, typename arg__channel_type_, typename... args__channel_type_>
 inline void update_channel(const arg__return_type_ &output, arg__channel_type_ *channel, args__channel_type_ *... channels) {
 update_channel(output, channel);
 update_channel(output, channels...);
 }

 void update_channels()
 {
 typename arg__dict_Entry__of__Node__node::value::fn_info::return_type producer_output
 = arg__dict_Entry__of__Node__node::value::fn_info::fn_ptr::value(std::get<args__read_from_idx>(base_class::channel_db)
 .get_buffer_to_read(base_class::release_idx)...);

 update_channel(producer_output,
 std::get<args__write_to_arc::value>(base_class::channel_db)
 .get_buffer_to_write(base_class::release_idx, base_class::period, base_class::period_db[args__write_to_arc::key])...);

 ++base_class::release_idx;
 }

public:
 Periodic_rt_task(Periodic_rt_task_communication_data<I, args__Channel__channel_list...> &communication_data) :
 base_class(communication_data) {
 }
};
#undef base_class

Lines 2390–2393

Lines 2394–2406

Lines 2408–2419

Lines 2421–2426

(a) Code generated for every producer node, which includes every consumer node that is also a producer node.

template<prms_2A(I, _, R(typename... args__Channel__channel_list), R(v1::array::Idx... args__read_from_idx))>
struct Periodic_rt_task<args_2A(I, _, R(tuple::construct<I, args__Channel__channel_list...>),
 R(pair::construct<I, tuple::construct<I>, Array_idx_list<I, args__read_from_idx...>>))> :

#define base_class Periodic_rt_task__base_class<args_2B(I, _, R(tuple::construct<I, args__Channel__channel_list...>), R(tuple::construct<I>))>
 base_class
{

private:
 void update_channels()
 {
 arg__dict_Entry__of__Node__node::value::fn_info::fn_ptr::value(std::get<args__read_from_idx>(base_class::channel_db)
 .get_buffer_to_read(base_class::release_idx)...);
 ++base_class::release_idx;
 }

public:
 Periodic_rt_task(Periodic_rt_task_communication_data<I, args__Channel__channel_list...> &communication_data) :
 base_class(communication_data) {
 }
};
#undef base_class

Lines 2428–2430

Lines 2431–2433

Lines 2434–2440

Lines 2442–2447

(b) Code generated for every sink node, which is every consumer node that is not also a producer node, and isolated node, which is neither producer nor consumer node.

FIGURE 23 Communication code generator in file internals/v1/v1_internals_program.hpp at commit 28fe6ac76a.36

The writing and reading functions are implemented by an instance of class Channel__base_class that is generated by the
template in lines 2215–2296 of file internals/v1/v1_internals_program.hpp at commit 28fe6ac76a.36 The writing and
reading functions internally work on a private data member called communication array. The communication array is an array
whose element type is the arc’s channel type and whose elements are initially the channel’s initial data. Since the writing and
reading functions share the communication array and other data members, all data members are protected by one thread mutex
(mutual exclusion). Currently, Tice library requires no specification of the mutex synchronization cost on the execution platform,
and therefore, Tice library does not account for it when checking the gEDF schedulability conditions. As a result, currently the
mutex synchronization cost must be included in the WCET assigned to every node.
The communication array’s size is three so that one slot can be used exclusively by the producer thread throughout each of its

periods, another slot can be used exclusively by the consumer thread throughout each of its period, and the remaining slot can

PRASTOWO ET AL. 35

be used to prevent the producer thread from blocking waiting for the consumer thread to finish using its slot when the producer’s
current period ends not at the start of some consumer’s period. The communication protocol that is described next uses another
private data member that is an array of size three called usage array. The usage array’s elements can be taken as the start times
of some periods of the associated consumer. Initially, two of the usage array’s elements are zero, which is the start time of the
consumer’s first period, while the remaining element is the end time of the consumer’s period that according to the MoCC is
the last to read the channel’s initial data.
Lastly, the writing and reading functions of a single buffer use the following communication protocol. An invoked writing

function will determine whether according to the MoCC the associated consumer will read the output data. If it is not the case,
the writing function will return a null pointer. Otherwise, the writing function will first determine the time t that according to
the MoCC the output data should be made visible to the associated consumer. The writing function will then compute a as the
start time of the consumer’s period at t and b as the end time of the consumer’s period that according to the MoCC is the last
to read the output data. The usage array is then sought for an element whose value is the smallest that is less than or equal to a.
Based on the MoCC, the initial elements of the communication and usage arrays, and the complete protocol description, it can
be proven that the element is guaranteed to be found at some index i because such an element means that the consumer thread is
currently not using the communication array’s slot at i. Once found, b is assigned to the usage array at index i, and a pointer to
the communication array at index i is returned. On the other hand, an invoked reading function will compute b as the start time
of the current period of the associated consumer and searches its usage array for every element whose value is the smallest that
is greater than b. As in the preceding paragraph, it can be proven that exactly one element will be found. Once found at some
index i, the reading function returns a pointer to the communication array at index i.

6.3 Generating Code for Other Architecture
The computation and communication code generation described in Section 6.1 and Section 6.2 is just one out of the many
ways Tice models can be implemented on various different architecture. Therefore, we will now show how Tice library can be
extended to generate various other implementing code.
With regard to generating the computation code, there are two cases to consider: (1) the thread scheduling and partition-

ing policies and (2) the underlying thread API. Generating different computation code in either case should extend only
the header-include list and the definition of function setup_scheduler in lines 29–34 and lines 2472–2496 of Figure 22,
respectively. The extension can be done in two different ways: using conditional preprocessor directives or using template
specializations. Using template specializations entails extending the parameter list of template HW described in Section 3.1 to
express the desired scheduling and partitioning policies. Either way, template construct__back_end__generate found in
file internals/v1/v1_internals_program.hpp36 has to be extended in the same way to incorporate the corresponding
schedulability test, which currently instantiates template construct__schedulability_test__gedf if the first parameter is
an instance of HW whose first parameter is an instance of Core_ids with at least one core ID.
With regard to generating communication code by considering every individual arc and their incident nodes, different code

should extend only the header-include list in lines 29–34 of Figure 22 and the definition of class template Channel__base_-
class in file internals/v1/v1_internals_program.hpp.36 Even if the communication code to be generated does not
consider every individual arc, the needed extension could still be limited to the aforementioned two areas by employing some
template metaprograms to obtain the desired Channel__base_class. If that proves insufficient, the needed extension should
be limited to the definition of class template Channel, which inherits the class template Channel__base_class, and the places
in file internals/v1/v1_internals_program.hpp36 that use Channel.

7 RELATEDWORK

The development of new language proposals targeting real-time applications has been quite popular some years ago. The first
family of languages that attracted a considerable attention and also achieved some industrial impact are synchronous languages.
In this family, we can mention control-oriented languages, such as ESTEREL (1983),45 and data-oriented languages, such as
LUSTRE (1987)46 and SIGNAL (1987).47 The original idea of synchronous languages is to decompose the application into a set
of logically parallel blocks, where each block is logically equivalent to a state machine. The fixed-point semantics for block
compositions allows the compiler to generate a “big” state machine, which is an iterative and deterministic implementation of

36 PRASTOWO ET AL.

the program. Key advantages of the synchronous languages are that any project can be implemented in hardware (VHDL) or
software alike and that any project can be statically checked. The context of synchronous languages is quite different than the
one considered here. In Tice, an application is defined as a set of nodes that are eventually contained in a set of concurrent tasks.
What is more, in synchronous languages, the time variable is not explicitly considered: the hardware is assumed to be fast enough
to make the time required by each transition negligible. In Tice, the timing constraints are first-class citizens in the program
definition. More recent proposals of synchronous languages, such as PRELUDE (2009),48 open the possibility for a multi-task
implementation of synchronous systems, but the conceptual distance from the programming paradigm of C/C++ is quite wide.
A number of different proposals offer a set of language constructs to define real-time tasks. Some proposals date back to

around 1990: REAL-TIME EUCLID (1986),49 which is based on the Euclid language, and TCEL (1993).50 Such languages
proposed themselves as alternatives to C/C++, but they did not raise much interest in the community of embedded system
developers. A number of other proposals are modifications of the C/C++ language. In this class, we can mention REAL-TIME
CONCURRENT C (1991),51 CRL (1995),52 PSIC (1998),53 ALERT (1999),54 FOREC (2013),55 and TIMED C (2018).56 Such
proposals were essentially dialects of the C language that simplified the definitions of concurrent tasks, real-time constraints,
and scheduling policies to be passed on to the scheduler. Most of these proposals came along with their own compilation tool-
chains, very frequently in the form of a source-to-source compiler. In contrast, Tice does not need any support other than a
C++ compiler compliant with the most recent C++ standard. More importantly, Tice champions a clear separation of concerns
between properties that can be checked by looking at the functional model and assuming that it operates according to the MoCC
and properties that need to be enforced in the back-end of the compiler to ensure that the architectural mapping of the application
respects the MoCC.
Tice borrows its LETMoCC fromGIOTTO,18 which is gaining acceptance, particularly in the automotive industry, to facilitate

the transition of embedded software from unicore to multicore processors.57 The TCEL follow-up paper that addresses the
synthesis problem58 inspires the kinds of temporal constraints that Tice can enforce, namely end-to-end delay and correlation
constraints. The semantics of the end-to-end delay that Tice can enforce is called last-to-first according to the nomenclature that
is introduced by Feiertag, et al.31 To our knowledge the semantics of correlation has not been explored to the same extent that
permits us to name the semantics of Tice’s correlation constraint in the same manner. Other possible semantics of end-to-end
delay has been further studied by Forget, et al. in proposing a language to express end-to-end delay constraints with various
semantics as well as the framework to verify the expressed constraints on the multi-periodic synchronous MoCC of PRELUDE,59
while Khatib, et al.60 andAba, et al.61 investigate end-to-end delay in a synchronous dataflow graph and inminimizing a system’s
energy consumption, respectively. Aside from that, while different strategies exist to implement the LETMoCC depending on the
target hardware and the optimality criteria,57,62,63 currently Tice library uses a simplistic non-optimal implementation strategy
described in Section 6.1 and Section 6.2 while showing how to accommodate other implementation strategies in Section 6.3.
Lastly, in using C++ as the platform to integrate different models, Tuscherer, et al. propose that MATLAB/SIMULINK models

be expressed directly in C++ programs so that the models can be seamlessly integrated with the C++ object models for sub-
microscopic traffic-flow simulations of autonomous-driving vehicles.38 On the other hand, Deters, et al. propose to integrate
application models and Liu-Layland workload models by expressing the Liu-Layland workload models directly in C++ programs
using a C++ active library that at compile time checks the schedulability of the expressed model, discarding some tasks auto-
matically to improve the schedulability, and generates the schedule accordingly.64 Additionally, Gil and Lenz propose a C++

active library for interacting with SQL databases safely by eliminating potential mismatches between application and database
models.65 Veldhuizen also proposes a C++ active library for expressing a number of scientific-computation data models in C++

programs so that the library can generate optimal code for operations on the expressed models.66 However, none of the models
is the MoCC (i.e., the semantics) of a real-time language, which Tice proposes.

8 CONCLUSIONS

We have proposed a novel real-time language, called Tice, that distinguishes itself from other real-time languages by being
compilable using off-the-shelf C++ compilers and workable with existing C++ programming tools (e.g., program analyzers,
editors, and debuggers). In Section 3, we have shown Tice’s syntax and semantics as well as demonstrating Tice’s efficacy in
Section 4 on a concrete real-time embedded-system engineering case study called ROSACE. In Section 4.2, we also highlighted
the particular use-case of using Tice and an off-the-shelf C++ compiler altogether as a modeling tool, demonstrating it on the
ROSACE case study in the aviation domain and to some extent on the WATERS 2017 Industrial Challenge in the automotive

PRASTOWO ET AL. 37

domain. Our evaluations of the particular use-case of using Tice and an off-the-shelf C++ compiler altogether as a modeling tool
in Section 5 show that the use-case would be practically feasible because Ticemodels exemplified by the ROSACE case study and
to some extent the WATERS 2017 Industrial Challenge would be compilable using an off-the-shelf C++ compiler repetitively,
each time with different parameters, in a reasonable time. Lastly, our evaluations in Section 5 show that GCC performed better
than Clang in general.
Therefore, future real-time language research could investigate how Tice would improve the current practice of engineering

the real-time aspect of embedded software. The result could then be used as a baseline to investigate how the various features
and models proposed in existing and future real-time languages would be best applied on which real-time engineering problems.
Such a baseline is possible because real-time languages that are compilable using off-the-shelf C++ compilers can be compared
empirically with variability only in the language factor as the same off-the-shelf C++ compilers and programming tools can
be used on the different real-time languages proposed. Aside from that, Tice itself could be further improved, for example, by
using different techniques to analyze temporal constraints with less memory and by incorporating different mapping strategies
in generating the set of real-time tasks depending on the target hardware, the expression of which can be further enriched
by incorporating information other than processor core IDs. Additionally, Tice could also incorporate further types of timing
constraints, such as those presented by Forget, et al.59 As Tice has been designed to be extensible, we are currently working on
another paper to deal with the problem of extending Tice with different mapping strategies, further types of timing constraints,
and communication with external tools, such as a WCET analyzer, a constraint solver, and a simulator, all of which without
requiring any modification to the off-the-shelf C++ compilers. Lastly, research on real-time languages that are compilable using
off-the-shelf C++ compilers could spur research to improve the state of the arts of C++ compilers.

ACKNOWLEDGMENTS

We thank Giuseppe Lipari and Julien Forget at the University of Lille in Villeneuve-d’Ascq, France, for the discussions on real-
time languages where Giuseppe Lipari gave us pointers to the ROSACE case study19 and repository,34 and Julien Forget gave us
pointers to Pierre-Emmanuel Hladik’s work in the repository and the paper that studies further semantics of end-to-end delay.59
Lastly, we would like to thank the anonymous reviewers for providing constructive feedback.

References

1. Baleani M, Ferrari A, Mangeruca L, et al. Correct-by-construction transformations across design environments for model-
based embedded software development. In: DATE. IEEE; 2005; Washington, DC, USA: 1044–1049.

2. Sangiovanni-Vincentelli A, Di Natale M. Embedded System Design for Automotive Applications. Computer 2007; 40(10):
42–51. doi: 10.1109/MC.2007.344

3. Cass S. Interactive: The Top Programming Languages 2019. Online at https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2019; accessed on August 3, 2020.

4. StackOverflow. Developer Survey 2019: How Technologies Are Connected. Online at https://insights.stackoverflow.com/
survey/2019#technology-_-how-technologies-are-connected; accessed on August 3, 2020.

5. Kormanyos C. Real-Time C++: Efficient Object-Oriented and Template Microcontroller Programming. Berlin, Germany:
Springer. 1st ed. 2013

6. Meyers S. Why C++ Sails When The Vasa Sank. Online at https://events.yandex.ru/lib/talks/1954/; accessed on August 3,
2020.

7. Maimone M. C++ on Mars. Online at https://www.youtube.com/watch?v=3SdSKZFoUa8; accessed on August 3, 2020.

8. Emshoff B. Using C++ on Mission and Safety Critical Platforms. Online at https://www.youtube.com/watch?v=
sRe77Mdna0Y; accessed on August 3, 2020.

http://dx.doi.org/10.1109/MC.2007.344
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://insights.stackoverflow.com/survey/2019#technology-_-how-technologies-are-connected
https://insights.stackoverflow.com/survey/2019#technology-_-how-technologies-are-connected
https://events.yandex.ru/lib/talks/1954/
https://www.youtube.com/watch?v=3SdSKZFoUa8
https://www.youtube.com/watch?v=sRe77Mdna0Y
https://www.youtube.com/watch?v=sRe77Mdna0Y

38 PRASTOWO ET AL.

9. Foote T. Celebrating 9Years of ROS. Online at https://spectrum.ieee.org/automaton/robotics/robotics-software/celebrating-
9-years-of-ros; accessed on August 3, 2020.

10. Burns A, Wellings A. Real-Time Systems and Programming Languages: Ada, Real-Time Java and C/Real-Time POSIX.
Harlow, Essex, England: Pearson Education Limited. 4th ed. 2009.

11. Gerkey B. Why ROS 2.0?. Online at https://design.ros2.org/articles/why_ros2.html; accessed on August 3, 2020.

12. Lin P. Tesla Autopilot Crash. Online at https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-
crash-why-we-should-worry-about-a-single-death; accessed on August 3, 2020.

13. Travis G. How the Boeing 737 Max Disaster Looks to a Software Developer. Online at https://spectrum.ieee.org/aerospace/
aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer; accessed on August 3, 2020.

14. Barr A. The Problem with Software: Why Smart Engineers Write Bad Code. Cambridge, MA, USA: The MIT Press. 1st ed.
2018.

15. Motor Industry Software Reliability Association.MISRA-C:2012Guidelines for the use of the C language in critical systems.
Warwickshire, UK: MIRA Limited. 3rd ed. 2013.

16. Motor Industry Software Reliability Association. MISRA-C++:2008 Guidelines for the use of the C++ language in critical
systems. Warwickshire, UK: MIRA Limited. 1st ed. 2008.

17. Jones N. Introduction to MISRA C. Online at https://www.embedded.com/electronics-blogs/beginner-s-corner/4023981/
Introduction-to-MISRA-C; accessed on August 3, 2020.

18. Henzinger TA, Horowitz B, Kirsch CM. Giotto: A Time-Triggered Language for Embedded Programming. In: EMSOFT.
Springer; 2001; Berlin, Germany: 166–184

19. Pagetti C, Saussié D, Gratia R, Noulard E, Siron P. The ROSACE case study: From Simulink specification to multi/many-
core execution. In: RTAS. IEEE; 2014; Washington, DC, USA: 309–318

20. Free Software Foundation. C++ Standards Support in GCC. Online at https://gcc.gnu.org/projects/cxx-status.html; accessed
on August 3, 2020.

21. University of Illinois at Urbana-Champaign . C++ Support in Clang. Online at http://clang.llvm.org/cxx_status.html;
accessed on August 3, 2020.

22. Beningo J. Reusable Firmware Development: A Practical Approach to APIs, HALs, and Drivers. New York, NY, USA:
Apress. 1st ed. 2017.

23. Barr M,Massa A. Programming Embedded Systems: With C and GNUDevelopment Tools. Sebastopol, CA, USA: O’Reilly.
2nd ed. 2006.

24. Edwards L. Embedded System Design on a Shoestring: Achieving High Performance with a Limited Budget. Kidlington,
Oxfordshire, England: Newnes. 1st ed. 2003.

25. Czarnecki K, Eisenecker U, Glück R, Vandevoorde D, Veldhuizen T. Generative Programming and Active Libraries. In:
Jazayeri M, Loos RGK, Musser DR. , eds. Generic Programming. Selected papers of International Seminar on Generic
Programming, Dagstuhl Castle, Germany, April 27–May 1, 1998. Berlin, Germany: Springer. 2000 (pp. 25–39)

26. Veldhuizen TL. Active Libraries and Universal Languages. PhD thesis. Indiana University, Indianapolis, IN, USA; 2004.

27. Sheard T, Jones SP. Template Meta-programming for Haskell. SIGPLAN Not. 2002; 37(12): 60–75. doi:
10.1145/636517.636528

28. Stroustrup B. Evolving a Language in and for the Real World: C++ 1991–2006. In: SIGPLAN. ACM; 2007; New York, NY,
USA: 4-1–4-59

https://spectrum.ieee.org/automaton/robotics/robotics-software/celebrating-9-years-of-ros
https://spectrum.ieee.org/automaton/robotics/robotics-software/celebrating-9-years-of-ros
https://design.ros2.org/articles/why_ros2.html
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-crash-why-we-should-worry-about-a-single-death
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-crash-why-we-should-worry-about-a-single-death
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://www.embedded.com/electronics-blogs/beginner-s-corner/4023981/Introduction-to-MISRA-C
https://www.embedded.com/electronics-blogs/beginner-s-corner/4023981/Introduction-to-MISRA-C
https://gcc.gnu.org/projects/cxx-status.html
http://clang.llvm.org/cxx_status.html
http://dx.doi.org/10.1145/636517.636528
http://dx.doi.org/10.1145/636517.636528

PRASTOWO ET AL. 39

29. Czarnecki K, Eisenecker UW. Generative Programming: Methods, Tools, and Applications. Boston, MA, USA: Addison-
Wesley. 1st ed. 2000.

30. Prastowo T, Palopoli L, Abeni L. C++Hard-real-timeActive Library: Syntax, Semantics, and Compilation of Tice Programs.
SIGBED Rev. 2019; 16(3): 69–74. doi: 10.1145/3373400.3373411

31. Feiertag N, Richter K, Nordlander J, Jonsson J. A Compositional Framework for End-to-End Path Delay Calculation of
Automative Systems under Different Path Semantics. In: CRTS. IEEE; 2008; Washington, DC, USA.

32. Kirsch CM, Sokolova A. The Logical Execution Time Paradigm. In: Chakraborty S, Eberspächer J. , eds. Advances in
Real-Time Systems. Festschrift for Georg Färber. Berlin, Germany: Springer. 2012 (pp. 103–120)

33. Prastowo T. Toward C++ as a Platform for Language-Oriented Programming: On the Embedding of a Model-Based Real-
Time Language. PhD thesis. Università degli Studi di Trento, Trento, Italy; 2020.

34. Pagetti C, Saussié D, Gratia R, et al. The Repository of the ROSACE Case Study. Online at https://forge.onera.fr/projects/
rosace-case-study; accessed on August 3, 2020.

35. Agency ES. N◦ 33–1996: Ariane 501 - Presentation of Inquiry Board report. Online at https://www.esa.int/Newsroom/
Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report; accessed on August 3, 2020.

36. Prastowo T. The Repository of Tice Library. Online at https://savannah.nongnu.org/projects/tice; accessed on August 3,
2020.

37. Groarke P. Re: [EXTERNAL] Re: Linear algebra library proposal. Online at https://lists.isocpp.org/sg14/2019/06/0149.php;
accessed on August 3, 2020.

38. Tuchscherer D, Weibert A, Tränkle F. Modern C++ As a Modeling Language for Automated Driving and Human-robot
Collaboration. In: MODELS. ACM; 2016; New York, NY, USA: 136–142

39. Pagetti C, Forget J, Falk H, Oehlert D, Luppold A. Automated Generation of Time-Predictable Executables on Multicore.
In: RTNS ’18. ACM; 2018; New York, NY, USA: 104–113

40. Forget J, Boniol F, Pagetti C. WATERS Industrial Challenge 2017 with Prelude. In: 8th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems. Online; 2017; http://waters2017.inria.fr/program/.

41. Prastowo T, Palopoli L, Abeni L, Lipari G. Analyses of a Model-Based Real-Time Language Embedded in C++. In: SAC.
ACM; 2020; New York, NY, USA: 1330–1339

42. Faggioli D, Abeni L, Lelli J, Cucinotta T, Scordino C. Deadline Task Scheduling. Online at https://www.kernel.org/doc/
Documentation/scheduler/sched-deadline.txt; accessed on August 3, 2020.

43. Baruah S, Bertogna M, Buttazzo G. Multiprocessor Scheduling for Real-Time Systems. Cham, Switzerland: Springer
International Publishing. 1st ed. 2015

44. Kerrisk M, Zijlstra P, Lelli J. sched—overview of CPU scheduling. Online at http://man7.org/linux/man-pages/man7/
sched.7.html; accessed on August 3, 2020.

45. Berry G, Moisan S, Rigault JP. Esterel: Towards a synchronous and semantically sound high-level language for real-time
applications. In: RTSS. IEEE; 1983; Silver Spring, MD, USA: 30–37.

46. Caspi P, Pilaud D, Halbwachs N, Plaice JA. LUSTRE: A Declarative Language for Real-time Programming. In: POPL.
ACM; 1987; New York, NY, USA: 178–188

47. Gautier T, Le Guernic P, Besnard L. SIGNAL: A declarative language for synchronous programming of RT systems. In:
FPCA. Springer; 1987; Berlin, Germany: 257–277

48. Forget J. A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints. PhD thesis. Institut
Supérieur de l’Aéronautique et de l’Espace, Toulouse, France; 2009.

http://dx.doi.org/10.1145/3373400.3373411
https://forge.onera.fr/projects/rosace-case-study
https://forge.onera.fr/projects/rosace-case-study
https://www.esa.int/Newsroom/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report
https://www.esa.int/Newsroom/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report
https://savannah.nongnu.org/projects/tice
https://lists.isocpp.org/sg14/2019/06/0149.php
http://waters2017.inria.fr/program/
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html

40 PRASTOWO ET AL.

49. Kligerman E, Stoyenko AD. Real-Time Euclid: A language for reliable real-time systems. IEEE Transactions on Software
Engineering 1986; SE-12(9): 941-949. doi: 10.1109/TSE.1986.6313049

50. Hong S, Gerber R. Scheduling with Compiler Transformations: The TCELApproach. In: RTOSS. IEEE; 1993;Washington,
DC, USA: 80–84.

51. Gehani N, Ramamritham K. Real-time Concurrent C: A language for programming dynamic real-time systems. Real-Time
Systems 1991; 3(4): 377–405. doi: 10.1007/BF00365999

52. Stoyenko AD, Marlowe TJ, Younis MF. A Language for Complex Real-Time Systems. The Computer Journal 1995; 38(4):
319–338. doi: 10.1093/comjnl/38.4.319

53. Louise S, David V, Delcoigne J, Aussaguès C. OASIS Project: Deterministic Real-Time for Safety Critical Embedded
Systems. In: 10th Workshop on ACM SIGOPS European Workshop. ACM; 2002; New York, NY, USA: 223–226

54. Palopoli L, Buttazzo G, Ancilotti P. A C language extension for programming real-time applications. In: RTCSA. IEEE;
1999; Washington, DC, USA: 103–110

55. Girault A, Hili N, Jenn E, Yip E. A Multi-Rate Precision Timed Programming Language for Multi-Cores. In: 2019 Forum
for Specification and Design Languages (FDL). IEEE; 2019; Washington, DC, USA: 1–8

56. Natarajan S, Broman D. Timed C: An Extension to the C Programming Language for Real-Time Systems. In: RTAS. IEEE;
2018; Washington, DC, USA: 227–239

57. Biondi A, Natale MD. Achieving Predictable Multicore Execution of Automotive Applications Using the LET Paradigm.
In: RTAS. IEEE; 2018; Washington, DC, USA: 240–250

58. Gerber R, Hong S, SaksenaM. Guaranteeing end-to-end timing constraints by calibrating intermediate processes. In: RTSS.
IEEE; 1994; Washington, DC, USA: 192–203

59. Forget J, Boniol F, Pagetti C. Verifying end-to-end real-time constraints on multi-periodic models. In: ETFA. IEEE; 2017;
Washington, DC, USA: 1–8

60. Khatib J, Munier-Kordon A, Klikpo EC, Trabelsi-Colibet K. Computing Latency of a Real-Time System Modeled by
Synchronous Dataflow Graph. In: RTNS. ACM; 2016; New York, NY, USA: 87–96

61. Ait Aba M, Zaourar L, Munier A. Approximation Algorithm for Scheduling a Chain of Tasks on Heterogeneous Systems.
In: Euro-Par 2017: Parallel Processing Workshops. Springer International Publishing; 2018; Cham, Switzerland: 353–365

62. Henzinger TA, Kirsch CM. The Embedded Machine: Predictable, Portable Real-time Code. In: PLDI. ACM; 2002; New
York, NY, USA: 315–326

63. Horowitz B. Single-mode, Single-processor Giotto Scheduling. Tech. Rep. UCB/CSD-03-1238, EECS Department, Uni-
versity of California, Berkeley; Berkeley, CA, USA: 2003.

64. Deters M, Gill C, Cytron R. Rate-Monotonic Analysis in the C++ Type System. In: MDES. IEEE; 2003; Washington, DC.

65. Gil JY, Lenz K. Simple and safe SQL queries with C++ templates. Science of Computer Programming 2010; 75(7): 573–595.
doi: 10.1016/j.scico.2010.01.004

66. Veldhuizen TL. Blitz++: The Library that Thinks it is a Compiler. In: Langtangen HP, Bruaset AM, Quak E., eds. Advances
in Software Tools for Scientific Computing. 1st ed. Berlin, Germany: Springer. 2000 (pp. 57–87)

How to cite this article: T. Prastowo, L. Palopoli, and L. Abeni (2020), Tice: a Real-Time Language Compilable Using C++

Compilers, Software: Practice and Experience, 2020;00:1–6.

http://dx.doi.org/10.1109/TSE.1986.6313049
http://dx.doi.org/10.1007/BF00365999
http://dx.doi.org/10.1093/comjnl/38.4.319
http://dx.doi.org/10.1016/j.scico.2010.01.004

	Tice: a Real-Time Language Compilable Using C++ Compilers
	Abstract
	Introduction
	Landscape
	Expected Features
	Contributions

	C++ Active Library and Its Use of Templates in Embedded Software
	C++ Active Library — Ordinary C++ Library for Its Users but Active for Its Engineers
	Executable Size and Debugging Concerns over Templates Used by a C++ Active Library

	A Real-Time Language Embedded in C++
	The Syntax of Tice
	The Semantics of Tice
	Model of Computation and Communication (MoCC)
	Temporal Constraints

	The ROSACE Case Study
	The Embedded Software Programmed in Tice
	Using Tice and Off-The-Shelf C++ Compilers as a Modeling Tool

	The Compilation Times of Tice Programs
	Evaluation Setup
	Evaluations
	Isolated Nodes Only
	Data Flows without Temporal Constraints
	One Last-to-First End-to-End Delay Constraint
	One Correlation Constraint
	One Last-to-First End-to-End Delay Constraint and Multiple Periods
	One Correlation Constraint and Multiple Periods
	ROSACE (Multiple Periods) with None/Either/Both Constraints
	WATERS 2017 (Multiple Periods) with None/Either/Both Constraints

	The Generation of Code to Implement Tice Programs
	The Generated Computation Code
	The Generated Communication Code
	Generating Code for Other Architecture

	Related Work
	Conclusions
	Acknowledgments
	References

